Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acutis, M., Ducco, G., and Grignani, C. (2000). “Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems.” Eur. J. Agron., Vol. 13, No. 2–3, pp. 191–206.
Babiker, I. S., Mohamed, M. A., Terao, H., Kato, K., and Ohta, K. (2004). “Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.” Environ. Int., Vol. 29, No. 8, pp. 1009–1017.
Bruton, J. M., McClendon, R. W., and Hoogenboom, G. (2000). “Estimating daily pan evaporation with artificial neural network.” Trans. ASAE, Vol. 43, No. 2, pp. 492–496.
Dorsch, M. M., Scragg, R. K. R., Mcmichael, A. J., Baghurst, P. A., and Dyer, K. F. (1984). “Congenital malformations and maternal drinking water supply in rural South Australia: A case control study.” Am. J. Epidemiol., Vol. 119, No. 4, pp. 473–486.
El-Sadek, A., Feyen, J., and Ragab, R. (2002). “Simulation of nitrogen balance of maize field under different drainage strategies using the DRAINMOD-N model.” Irrig. Drain., Vol. 51, pp. 61–75.
French, M. N., Krayewski, W. F., and Cuykendall, R. R. (1992). “Rainfall forecasting in space and time using a neural networks.” J. Hydrol., Vol. 137, No. 1–3, pp. 1–37.
Hambright, K. D., Ragep, F. J., and Ginat, J. (2006). Water in the middle east: Cooperation and technological solutions in the jordan valley, University of Oklahoma Press.
Jain, S. K., Das, A., and Srivastava, D. K. (1999). “Application of ANN for reservoir inflow prediction and operation.” J. Water Res. Plan. Manage., Vol. 125, No. 5, pp. 263–271.
Keskin, T. E., Düenci, M., and Kaçarolu, F. (2015). “Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartn (Turkey).” Environmental Earth Sciences, Vol. 73, No. 9, pp. 5333–5347.
Khosravi Dehkordi, A., Afyuni, M., and Musavi, F. (2004). “Nitrate concentration in groundwater in the Zayanderoud river basin.” Environmental. Studies. J., Vol. 32, No. 39, pp. 33–40.
Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W., and Pruitt, W. O. (2002). “Estimating evapotranspiration using artificial neural networks.” J. Irrig. And Drain. ASCE, Vol. 128, No. 4, pp. 224–233.
Lek, S., Guiresse, M., and Giraudel, J. L. (1999). “Predicting stream nitrogen concentration from watershed features using neural networks.” Water Res., Vol. 33, No. 16, pp. 3469–3478.
Noh, H., Zhang, Q., Shin, B., Han, S., and Feng, L. (2006). “A neural network model of maize crop nitrogen stress assessment for a multispectral imaging sensor.” Biosyst. Eng., Vol. 94, No. 4, pp. 477–485.
Nor, A. S. M., Faramarzi, M., Yunus, M. A. M., and Ibrahim, S. (2014). “Nitrate and sulfate estimations in water sources using a planar electromagnetic sensor array and artificial neural network method.” IEEE, Vol. 15, No. 1, pp. 497–504.
Odhiambo, L. O., Yoder, R. E., Yoder, D. C., and Hines, J. W. (2001). “Optimization of fuzzy evaporation model through neural training with input-output examples.” Trans. ASAE, Vol. 44, No. 6, pp. 1625–1633.
Panagopoulos, Y., Makropoulos, C., Baltas, E., and Mimikou, M. (2011). “SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations.” Ecol. Model., Vol. 222, No. 19, pp. 3500–3512.
Park, J., Daniels, H. V., and Cho, S. H. (2013). “Nitrite toxicity and methemoglobin changes in southern flounder, paralichthys lethostigma, in brackish water.” J. World. Aquacult. Soc., Vol. 44, No. 5, pp. 726–734.
Park, Y. S., Cereghino, R., Compin, A., and Lek, S. (2003). “Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters.” Ecol. Model., Vol. 160, No. 3, pp. 265–280.
Rogers, L. L. and Dowla, F. U. (1994). “Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling.” Water Resour. Res., Vol. 30, No. 2, pp. 457–481.
Shukla, M. B., Kok, R., Prasher, S. O., Clark, G., and Lacroix, R. (1996). “Use of artificial neural network in transient drainage design.” Trans. ASAE, Vol. 39, No. 1, pp. 119–124.
Singh, K. P., Basant, A., Malik, A., and Jain, G. (2009). “Artificial neural network modeling of the river water quality–A case study.” Ecol. Model., Vol. 220, No. 6, pp. 888–895.
Sobedji, J. M., Van Es, H. M., and Huston, J. L. (2001). “N fate and transport under variable cropping history and fertilizer rate on loamy sand and clay loam soils: I. Calibration of the LEACHMN model.” Plant Soil, Vol. 299, No. 1, pp. 57–70.
Thirumalaian, K. and Deo, M. C. (1998). “River stage forecasting using artificial neural network.” J. Hydrol. Eng., Vol. 3, No. 1, pp. 26–32.
Trajkovic, S., Todorovic, B., and Standkovic, M. (2003). “Forecasting of reference evapotranspiration by artificial neural network.” J. Irrig. And Drain., ASCE, Vol. 129, No. 6, pp. 454–457.
Tuppad, P., Douglas-Mankin, K. R., Lee, T., Srinivasan, R., and Arnold, J. G. (2011). “Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption.” Am. Soc. Agric. Biol. Eng., Vol. 54, No. 5, pp. 1677–1684.
Wen, C. W. and Lee, C. S. (1998). “A neural networkapproach to multiobjective optimization for water quality management in a river basin.” Water Resour. Res., Vol. 34, No. 3, pp. 427–436.
Yang, C. C., Prasher, S. O., and Lacroix, R. (1996). “Application of artificial neural network to land drainage engineering.” Trans. ASAE, Vol. 39, No. 2, pp. 525–533.
Yang, C. C., Prasher, S. O., Lacroix, R., Sreekanth, S., Patni, N. K., and Masse, L. (1997). “Artificial neural network model for subsurfacedrained farmlands.” J. Irrig. And Drain., ASCE, Vol. 123, No. 4, pp. 285–292.
Zealand, C. M., Burn, D. H., and Simonovic, S. P. (1999). “Short term streamflow forecasting using artificial neural networks.” J. Hydrol., Vol. 214, No. 1–3, pp. 32–48.