Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow
Tóm tắt
Microscopic hair-like structures, such as cilia, exist ubiquitously in nature and are used by various organisms for transportation purposes. Many efforts have been made to mimic the fluid pumping function of cilia, but most of the fabrication processes of these “artificial cilia” are tedious and expensive, hindering their practical applications. In this paper, an attractive and potentially cost-effective, magnetic fiber drawing fabrication technique of magnetic artificial cilia is demonstrated. Our artificial cilia are able to generate a substantial fluid net flow velocity of water of up to 70 µm/s (corresponding to a generated volumetric flow rate about 0.6 µL/min and a pressure difference of about 0.04 Pa) in a closed-loop microfluidic channel when actuated using an external magnetic field. A detailed analysis of the relationship between the experimentally observed cilia kinematics and corresponding induced flow is in line with a previously reported theoretical/numerical study.
Tài liệu tham khảo
Babataheri A, Roper M, Fermigier M, Du Roure O (2011) Tethered fleximags as artificial cilia. J Fluid Mech 678:5–13. doi:10.1017/S002211201100005x
Belardi J, Schorr N, Prucker O, Ruhe J (2011) Artificial cilia: generation of magnetic actuators in microfluidic systems. Adv Funct Mater 21(17):3314–3320
den Toonder JMJ, Onck PR (2013) Microfluidic manipulation with artificial/bioinspired cilia. Trends Biotechnol 31(2):85–91
den Toonder J, Bos F, Broer D, Filippini L, Gillies M, de Goede J, Mol T, Reijme M, Talen W, Wilderbeek H, Khatavkar V, Anderson P (2008) Artificial cilia for active micro-fluidic mixing. Lab Chip 8(4):533–541
Downton MT, Stark H (2009) Beating kinematics of magnetically actuated cilia. EPL 85(4):44002
Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865
Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7(5):1428–1434
Fahrni F, Prins MWJ, van Ijzendoorn LJ (2009) Micro-fluidic actuation using magnetic artificial cilia. Lab Chip 9(23):3413–3421
Gao Y, Hulsen MA, Kang TG, Toonder JMJd (2012) Numerical and experimental study of rotating magnetic particle chain in a viscous fluid. Phys Rev E 86:041503. doi:10.1103/PhysRevE.86.041503
Hussong J, Schorr N, Belardi J, Prucker O, Ruhe J, Westerweel J (2011) Experimental investigation of the flow induced by artificial cilia. Lab Chip 11(12):2017–2022
Khaderi SN, Craus CB, Hussong J, Schorr N, Belardi J, Westerweel J, Prucker O, Ruhe J, den Toonder JMJ, Onck PR (2011) Magnetically-actuated artificial cilia for microfluidic propulsion. Lab Chip 11(12):2002–2010
Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64. doi:10.1088/0960-1317/14/6/R01
Purcell EM (1977) Life at low Reynolds-number. Am J Phys 45(1):3–11. doi:10.1119/1.10903
Shields AR, Fiser BL, Evans BA, Falvo MR, Washburn S, Superfine R (2010) Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc Natl Acad Sci USA 107(36):15670–15675
van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8(8):677–682
Vilfan M, Potocnik A, Kavcic B, Osterman N, Poberaj I, Vilfan A, Babic D (2010) Self-assembled artificial cilia. Proc Natl Acad Sci USA 107(5):1844–1847
Wang Y, Gao Y, Wyss H, Anderson P, den Toonder J (2013) Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip 13(17):3360–3366. doi:10.1039/c3lc50458a
White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New York
Zarzar LD, Kim P, Aizenberg J (2011) Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv Mater 23(12):1442–1446