Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography

JACC: Cardiovascular Imaging - Tập 14 - Trang 1918-1928 - 2021
Ivar M. Salte1,2, Andreas Østvik3, Erik Smistad3, Daniela Melichova2,4, Thuy Mi Nguyen1,2, Sigve Karlsen4, Harald Brunvand4, Kristina H. Haugaa2,5, Thor Edvardsen2,5, Lasse Lovstakken3, Bjørnar Grenne3,6
1Department of Medicine, Hospital of Southern Norway, Kristiansand, Norway
2Faculty of Medicine, University of Oslo, Oslo, Norway
3Centre for Innovative Ultrasound Solutions and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
4Department of Medicine, Hospital of Southern Norway, Arendal, Norway
5Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
6Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway

Tài liệu tham khảo

Lang, 2015, Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging, Eur Heart J Cardiovasc Imaging, 16, 233, 10.1093/ehjci/jev014 Farsalinos, 2015, Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE Inter-Vendor Comparison Study, J Am Soc Echocardiogr, 28, 1171, 10.1016/j.echo.2015.06.011 Litjens, 2019, State-of-the-art deep learning in cardiovascular image analysis, J Am Coll Cardiol Img, 12, 1549, 10.1016/j.jcmg.2019.06.009 LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539 Madani, 2018, Fast and accurate view classification of echocardiograms using deep learning, NPJ Digit Med, 1, 1, 10.1038/s41746-017-0013-1 Østvik, 2019, Real-time standard view classification in transthoracic echocardiography using convolutional neural networks, Ultrasound Med Biol, 45, 374, 10.1016/j.ultrasmedbio.2018.07.024 Meidell Fiorito, 2018, Detection of cardiac events in echocardiography using 3D convolutional recurrent neural networks. 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, 1 Chen, 2020, Deep learning for cardiac image segmentation: a review, Front Cardiovasc Med, 7, 1, 10.3389/fcvm.2020.00025 Østvik, 2021, Myocardial function imaging in echocardiography using deep learning, IEEE Trans Med Imaging, 40, 1340, 10.1109/TMI.2021.3054566 Thygesen, 2012, Third universal definition of myocardial infarction, Eur Heart J, 33, 2551, 10.1093/eurheartj/ehs184 Galderisi, 2017, Eur Heart J Cardiovasc Imaging, 18, 1301, 10.1093/ehjci/jex244 Voigt, 2015, Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging, Eur Heart J Cardiovasc Imaging, 16, 1, 10.1093/ehjci/jeu184 Leclerc, 2019, Deep learning for segmentation using an open large-scale dataset in 2D echocardiography, IEEE Trans Med Imaging, 38, 2198, 10.1109/TMI.2019.2900516 Alessandrini, 2018, Realistic vendor-specific synthetic ultrasound data for quality assurance of 2-D speckle tracking echocardiography: simulation pipeline and open access database, IEEE Trans Ultrason Ferroelectr Freq Control, 65, 411, 10.1109/TUFFC.2017.2786300 Bland, 1986, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 1, 307, 10.1016/S0140-6736(86)90837-8 Shieh, 2018, The appropriateness of Bland-Altman's approximate confidence intervals for limits of agreement, BMC Med Res Methodol, 18, 1, 10.1186/s12874-018-0505-y Barbier, 2015, Reliability and feasibility of longitudinal AFI global and segmental strain compared with 2D left ventricular volumes and ejection fraction: intra- and inter-operator, test-retest, and inter-cycle reproducibility, Eur Heart J Cardiovasc Img, 16, 642, 10.1093/ehjci/jeu274 Manovel, 2010, Assessment of left ventricular function by different speckle-tracking software, Eur J Echocardiogr, 11, 417, 10.1093/ejechocard/jep226 Asch, 2019, Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert, Circ Cardiovasc Img, 12, 10.1161/CIRCIMAGING.119.009303 Ghorbani, 2020, Deep learning interpretation of echocardiograms, NPJ Digital Med, 3, 1, 10.1038/s41746-019-0216-8 Nagata, 2015, Intervendor variability of two-dimensional strain using vendor-specific and vendor-independent software, J Am Soc Echocardiogr, 28, 630, 10.1016/j.echo.2015.01.021 Anwar, 2017, Comparison of two-dimensional strain analysis using vendor-independent and vendor-specific software in adult and pediatric patients, JRSM Cardiovasc Dis, 6, 1 Zhang, 2018, Fully automated echocardiogram interpretation in clinical practice, Circulation, 138, 1623, 10.1161/CIRCULATIONAHA.118.034338 Baron, 2019, Test-retest reliability of new and conventional echocardiographic parameters of left ventricular systolic function, Clin Res Cardiol, 108, 355, 10.1007/s00392-018-1363-7