Artifacts and Visible Singularities in Limited Data X-Ray Tomography
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bates, R., & Lewitt, R. (1978). Image reconstruction from projections: I—general theoretical considerations. Optik, 50, 19–33.
Bates, R., & Lewitt, R. (1978). Image reconstruction from projections: III—projection completion methods (theory). Optik, 50, 189–204.
Bates, R., & Lewitt, R. (1978). Image reconstruction from projections: IV—projection completion methods (computational examples). Optik, 50, 269–278.
Beylkin, G. (1984). The inversion problem and applications of the generalized Radon transform. Communications on Pure and Applied Mathematics, 37, 579–599.
Cormack, A. M. (1963). Representation of a function by its line integrals with some radiological applications. Journal of Applied Physics, 34, 2722–2727.
Cormack, A. M. (1964). Representation of a function by its line integrals with some radiological applications II. Journal of Applied Physics, 35, 2908–2913.
Davison, M., & Grünbaum, F. (1981). Tomographic reconstruction with arbitrary directions. Communications on Pure and Applied Mathematics, 34, 77–120.
deHoop, M. (2003). Microlocal analysis of seismic inverse scattering, Mathematical Sciences Research Institute Publications (vol. 47, pp. 219–296). Cambridge: Cambridge Univ. Press.
Faridani, A., Finch, D., Ritman, E. L., & Smith, K. T. (1997). Local tomography II. SIAM Journal on Applied Mathematics, 57, 1095–1127.
Faridani, A., Ritman, E. L., & Smith, K. T. (1992). Local tomography. SIAM Journal on Applied Mathematics, 52, 459–484.
Fidler, T., Grasmair, M., & Scherzer, O. (2012). Shape reconstruction with a priori knowledge based on integral invariants. SIAM Journal on Imaging Sciences, 5(2), 726–745.
Finch, D. V. (1985). Cone beam reconstruction with sources on a curve. SIAM Journal on Applied Mathematics, 45(4), 665–673.
Finch, D. V., Lan, I. R., & Uhlmann, G. (2003). Microlocal analysis of the restricted X-ray transform with sources on a curve. In G. Uhlmann (Ed.), Inside out, inverse problems and applications, MSRI Publications (Vol. 47, pp. 193–218). Cambridge: Cambridge University Press.
Frikel, J. (2013). Sparse regularization in limited angle tomography. Applied and Computational Harmonic Analysis, 34(1), 117–141.
Frikel, J., & Quinto, E. T. (2013). Characterization and reduction of artifacts in limited angle tomography. Inverse Problems, 29(12), 125007.
Frikel, J., & Quinto, E. T. (2015). Artifacts in incomplete data tomography with applications to photoacoustic tomography and sonar. SIAM Journal on Applied Mathematics, 75(2), 703–725.
Frikel, J., & Quinto, E. T. (2016). Limited data problems for the generalized Radon transform in $$\mathbb{R}^n$$. SIAM Journal on Mathematical Analysis, 48, 2301–2318.
Greenleaf, A., & Uhlmann, G. (1989). Non-local inversion formulas for the X-ray transform. Duke Mathematical Journal, 58, 205–240.
Guillemin, V. (1985). On some results of Gelfand in integral geometry. Proceedings of Symposia in Pure Mathematics, 43, 149–155.
Guillemin, V., & Sternberg, S. (1977). Geometric asymptotics. Providence, RI: American Mathematical Society.
Hörmander, L. (2003). The analysis of linear partial differential operators. I. Classics in Mathematics. Berlin: Springer. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin]
Katsevich, A. (1997). Local tomography for the limited-angle problem. Journal of Mathematical Analysis and Applications, 213(1), 160–182.
Katsevich, A. (2016). Reconstruction algorithms for a class of restricted ray transforms without added singularities. Journal of Fourier Analysis and Applications,. doi: 10.1007/s00041-016-9473-y .
Krishnan, V. P., & Quinto, E. T. (2011). Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 5(3), 659–674. doi: 10.3934/ipi.2011.5.659 .
Krishnan, V. P., & Quinto, E. T. (2015). Microlocal analysis in tomography. In O. Scherzer (Ed.), Handbook of mathematical methods in imaging, Chap. 18 (pp. 847–902). New York: Springer.
Kuchment, P., Lancaster, K., & Mogilevskaya, L. (1995). On local tomography. Inverse Problems, 11, 571–589.
Liu, B., Wang, G., Ritman, E. L., Cao, G., Lu, J., Zhou, O., et al. (2011). Image reconstruction from limited angle projections collected by multisource interior X-ray imaging systems. Physics in Medicine and Biology, 56, 6337–6357. doi: 10.1088/0031-9155/56/19/012 .
Louis, A. K. (1980). Picture reconstruction from projections in restricted range. Mathematical Methods in the Applied Sciences, 2, 209–220.
Louis, A. K. (1986). Incomplete data problems in X-ray computerized tomography I. Singular value decomposition of the limited angle transform. Numerische Mathematik, 48, 251–262.
Louis, A. K. (1999). A unified approach to regularization methods for linear ill-posed problems. Inverse Problems, 15, 489–498.
Natterer, F. (1980). Efficient implementation of ‘optimal’ algorithms in computerized tomography. Mathematical Methods in the Applied Sciences, 2, 545–555.
Natterer, F., & Wübbeling, F. (2001). Mathematical methods in image reconstruction. Philadelphia, PA: SIAM Monographs on Mathematical Modeling and Computation: Society for Industrial and Applied Mathematics (SIAM).
Nguyen, L. V. (2015). How strong are streak artifacts in limited angle computed tomography? Inverse Problems, 31(5), 055003–055026.
Nguyen, L. V. (2015). On artifacts in limited data spherical radon transform: flat observation surfaces. SIAM Journal on Mathematical Analysis, 47(4), 2984–3004. doi: 10.1137/140980740 .
Palamodov, V. (2000). Reconstruction from limited data of arc means. Journal of Fourier Analysis and Applications, 6, 25–42.
Quinto, E. T. (1983). Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform. Journal of Mathematical Analysis and Applications, 95, 437–448.
Quinto, E. T. (1988). Tomographic reconstructions from incomplete data-numerical inversion of the exterior Radon transform. Inverse Problems, 4, 867–876.
Quinto, E. T. (1993). Singularities of the X-ray transform and limited data tomography in $$\mathbb{R}^2$$ and $$\mathbb{R}^3$$. SIAM Journal on Mathematical Analysis, 24(5), 1215–1225.
Quinto, E. T. (1998). Exterior and limited angle tomography in non-destructive evaluation. Inverse Problems, 14, 339–353.
Quinto, E. T. (2006). An introduction to X-ray tomography and Radon transforms. In G. Olafsson & E. T. Quinto (Eds.), The Radon transform, inverse problems, and tomography (pp. 1–23). Providence, RI: Amer. Math. Soc.
Quinto, E. T. (2007). Local algorithms in exterior tomography. Journal of Computational and Applied Mathematics, 199, 141–148.
Quinto, E. T., & Öktem, O. (2008). Local tomography in electron microscopy. SIAM Journal on Mathematical Analysis, 68, 1282–1303.
Rudin, W. (1973). Functional analysis, McGraw-Hill Series in Higher Mathematics. New York: McGraw-Hill Book Co.
Stefanov, P., & Uhlmann, G. (2013). Is a curved flight path in SAR better than a straight one? SIAM Journal on Applied Mathematics, 73(4), 1596–1612.
Trèves, F. (1980). Introduction to pseudodifferential and Fourier integral operators. Volume 2: Fourier integral operators. New York: Plenum Press.
Vainberg, E., Kazak, I. A., & Kurozaev, V. P. (1981). Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections. Soviet Journal of Nondestructive Testing, 17, 415–423.