Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China

Electronic Journal of Biotechnology - Tập 25 - Trang 50-57 - 2017
Lei Yan1, Huixin Hu1, Shuang Zhang1, Peng Chen2, Weidong Wang1, Hongyu Li2
1College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
2Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China

Tài liệu tham khảo

Chai, 2016, Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil, J Soil Sediment, 16, 2430, 10.1007/s11368-016-1449-7 Anthemidis, 2013, Advances in on-line hydride generation atomic spectrometric determination of arsenic, Anal Lett, 46, 1672, 10.1080/00032719.2012.755691 Hsu, 2011, Arsenic speciation in biomedical sciences: Recent advances and applications, Kaohsiung J Med Sci, 27, 382, 10.1016/j.kjms.2011.05.005 Kritharis, 2013, The evolving use of arsenic in pharmacotherapy of malignant disease, Ann Hematol, 92, 719, 10.1007/s00277-013-1707-3 Li, 2012, Determination of arsenic speciation in secondary zinc oxide and arsenic leachability, Trans Nonferrous Met Soc Chin, 22, 1209, 10.1016/S1003-6326(11)61307-1 Drewniak, 2013, Arsenic-transforming microbes and their role in biomining processes, Environ Sci Pollut Res, 20, 7728, 10.1007/s11356-012-1449-0 Hong, 2016, Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic, J Biosci Bioeng, 121, 536, 10.1016/j.jbiosc.2015.09.009 Pathak, 2009, Bioleaching of heavy metals from sewage sludge: A review, J Environ Manage, 90, 2343, 10.1016/j.jenvman.2008.11.005 Guo, 2011, Catalytic effect of Ag+ and Cu2+ on leaching realgar (As2S2), Hydrometallurgy, 106, 99, 10.1016/j.hydromet.2010.12.006 Hejny, 2012, Crystal-structure properties and the molecular nature of hydrostatically compressed realgar, Phys Chem Miner, 39, 399, 10.1007/s00269-012-0495-y Zhang, 2007, Bioleaching of arsenic from medicinal realgar by pure and mixed cultures, Process Biochem, 42, 1265, 10.1016/j.procbio.2007.05.021 Chen, 2011, Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources, Bioresour Technol, 102, 3260, 10.1016/j.biortech.2010.11.059 Yan, 2010, Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans, Bioresour Technol, 101, 6572, 10.1016/j.biortech.2010.03.065 Yang, 2009, Fe (II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate, Front Earth Sci China, 3, 221, 10.1007/s11707-009-0027-3 Xu, 2014, Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite, J Environ Sci, 26, 1463, 10.1016/j.jes.2014.05.012 Eisapour, 2013, Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design, Ann Nucl Energy, 54, 245, 10.1016/j.anucene.2012.11.006 Gholami, 2012, Process optimization and modeling of heavy metals extraction from a molybdenum rich spent catalyst by Aspergillus niger using response surface methodology, J Ind Eng Chem, 18, 218, 10.1016/j.jiec.2011.11.006 Bergamo, 2004, Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S-23S rDNA spacer polymorphism analysis, Res Microbiol, 155, 559, 10.1016/j.resmic.2004.03.009 Chen, 2012, Surface alteration of realgar (As4S4) by Acidithiobacillus ferrooxidans, Int Microbiol, 15, 9 Zhang, 2013, Isolation and characterization of Acidithiobacillus ferrooxidans strain QXS-1 capable of unusual ferrous iron and sulfur utilization, Hydrometallurgy, 136, 51, 10.1016/j.hydromet.2013.03.005 Yan, 2010, Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3, J Hazard Mater, 178, 209, 10.1016/j.jhazmat.2010.01.065 Zhang, 2014, Analysis of arsenic species in realgar bioleaching solution by capillary zone electrophoresis, Afr J Microbiol Res, 8, 3976 Liu, 2011, Response surface methodology for optimization of copper leaching from a low-grade flotation middling, Miner Metall Process, 28, 139 Körbahti, 2009, Determination of optimum operating conditions of carmine decoloration by UV/H2O2 using response surface methodology, J Hazard Mater, 161, 281, 10.1016/j.jhazmat.2008.03.118 Chen, 2013, Optimal parameters for bioleaching of realgar using Acidithiobacillus ferrooxidans under different growth conditions and mathematical analysis, Biocatal Biotransformation, 31, 33, 10.3109/10242422.2012.756476 Haghshenas, 2012, Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors, Hydrometallurgy, 111, 22, 10.1016/j.hydromet.2011.09.010 Das, 1999, Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms, Biometals, 12, 1, 10.1023/A:1009228210654 Swamy, 2005, Bioleaching with ultrasound, Ultrason Sonochem, 12, 301, 10.1016/j.ultsonch.2004.01.035 Olubambi, 2009, Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores, Hydrometallurgy, 95, 159, 10.1016/j.hydromet.2008.05.043