Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ravenscroft, P., Brammer, H. & Richards, K. Arsenic Pollution: A Global Synthesis (Wiley-Blackwell, 2009).
Meharg, A. A. et al. Codeposition of organic carbon and arsenic in Bengal Delta aquifers. Environ. Sci. Technol. 40, 4928–4935 (2006).
Weber, F. A., Hofacker, A. F., Voegelin, A. & Kretzschmar, R. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ. Sci. Technol. 44, 116–122 (2010).
Kocar, B. D. & Fendorf, S. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ. Sci. Technol. 43, 4871–4877 (2009).
Postma, D. et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam. Geochim. Cosmochim. Acta 74, 3367–3381 (2010).
Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002).
McArthur, J. M. et al. How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication. Wat. Resour. Res. 44, W11411 (2008).
Mladenov, N. et al. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ. Sci. Technol. 44, 123–128 (2010).
Neumann, R. B. et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geosci. 3, 46–52 (2010).
Sengupta, S. et al. Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 42, 5156–5164 (2008).
Mailloux, B. J. et al. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proc. Natl Acad. Sci. USA 110, 5331–5335 (2013).
Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M. & Fendorf, S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–508 (2008).
Mladenov, N. et al. Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility. Environ. Sci. Technol. 49, 10815–10824 (2015).
Roberts, L. C. et al. Arsenic release from paddy soils during monsoon flooding. Nature Geosci. 3, 53–59 (2010).
Postma, D. et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 71, 5054–5071 (2007).
LaRowe, D. E. & VanCappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).
Benner, S. G. et al. Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Appl. Geochem. 23, 3072–3087 (2008).
Roden, E. E. Fe(III) oxide reactivity toward biological versus chemical reduction. Environ. Sci. Technol. 37, 1319–1324 (2003).
Cutting, R. S., Coker, V. S., Fellowes, J. W., Lloyd, J. R. & Vaughan, D. J. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Acta 73, 4004–4022 (2009).
Bonneville, S., Behrends, T. & VanCappellen, P. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: a linear free energy relationship. Geochim. Cosmochim. Acta 73, 5273–5282 (2009).
Lentini, C. J., Wankel, S. D. & Hansel, C. M. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiol. 3, 404 (2012).
Jackson, B. E. & McInerney, M. J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415, 454–456 (2002).
Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).
Jin, Q. S. & Bethke, C. M. Predicting the rate of microbial respiration in geochemical environments. Geochim. Cosmochim. Acta 69, 1133–1143 (2005).
Kocar, B. D. et al. Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong Delta. Appl. Geochem. 23, 3059–3071 (2008).
Kocar, B., Benner, S. & Fendorf, S. Deciphering and predicting spatial and temporal concentrations of arsenic within the Mekong Delta aquifer. Environ. Chem. 11, 579–594 (2014).
Martinsen, A., Skjåk-Bræk, G. & Smidsrød, O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33, 79–89 (1989).
Héry, M. et al. Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing. Environ. Microbiol. 17, 1857–1869 (2015).
Ying, S., Damashek, J., Fendorf, S. & Francis, C. Indigenous arsenic (V)-reducing microbial communities in redox-fluctuating near-surface sediments of the Mekong Delta. Geobiology 13, 581–587 (2015).
DiChristina, T. J., Fredrickson, J. K. & Zachara, J. M. Enzymology of electron transport: energy generation with geochemical consequences. Rev. Mineral. Geochem. 59, 27–52 (2005).
Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).
Postma, D. & Jakobsen, R. Redox zonation: equilibrium constraints on the Fe(III)/SO4− reduction interface. Geochim. Cosmochim. Acta 60, 3169–3175 (1996).
Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62, 1745–1756 (1998).
Dittmar, J. et al. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ. Sci. Technol. 41, 5967–5972 (2007).
Stuckey, J. W. et al. Peat formation concentrates arsenic within sediment deposits of the Mekong Delta. Geochim. Cosmochim. Acta 149, 190–205 (2015).
Stuckey, J. W., Schaefer, M. V., Benner, S. G. & Fendorf, S. Reactivity and speciation of mineral-associated arsenic in seasonal and permanent wetlands of the Mekong Delta. Geochim. Cosmochim. Acta 171, 143–155 (2015).
Meng, X. & Wang, W. in Proceedings of the Third International Conference on Arsenic Exposure and Health Effects. Society for Environmental Geochemistry and Health (Soc. Environ. Geochem. Health, 1998).
Masue, Y., Loeppert, R. H. & Kramer, T. A. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ. Sci. Technol. 41, 837–842 (2007).
Masue-Slowey, Y., Loeppert, R. H. & Fendorf, S. Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: implications for As retention. Geochim. Cosmochim. Acta 75, 870–886 (2011).
Tufano, K. J., Reyes, C., Saltikov, C. W. & Fendorf, S. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 42, 8283–8289 (2008).
Loeppert, R. H. & Inskeep, W. P. in Methods of Soil Analysis (ed. Bigham, J. M.) 639–664 (Soil Science Society of America, 1996).