Arrhythmias and vagus nerve stimulation

Heart Failure Reviews - Tập 16 - Trang 147-161 - 2010
Youhua Zhang1, Todor N. Mazgalev1
1Department of Molecular Cardiology and Cardiovascular Medicine, Cleveland Clinic, Cleveland, USA

Tóm tắt

Enhancing vagal tone by delivering electrical stimulation to the vagal nerves (VNS) is emerging as a promising novel therapy in heart failure. In addition, VNS is already an FDA-approved therapy for refractory epilepsy and depression. Besides its well-known negative chronotropic, inotropic, and dromotropic effects, VNS has profound effects on cardiac electrophysiology and arrhythmogenesis. This review summarizes current knowledge about the complex relationship between VNS and cardiac arrhythmias. Specifically, the focus is on VNS capability to become a therapeutic strategy along with important electrophysiological alterations that may constitute a potential arrhythmogenic substrate and become a clinical concern.

Tài liệu tham khảo

Levy MN (1984) Cardiac sympathetic-parasympathetic interactions. Fed Proc 43:2598–2602 Ansari S, Chaudhri K, Al Moutaery KA (2007) Vagus nerve stimulation: indications and limitations. Acta Neurochir Suppl 97:281–286 Milby AH, Halpern CH, Baltuch GH (2008) Vagus nerve stimulation for epilepsy and depression. Neurotherapeutics 5:75–85 Schlaepfer TE, Frick C, Zobel A, Maier W, Heuser I, Bajbouj M, O’Keane V, Corcoran C, Adolfsson R, Trimble M, Rau H, Hoff HJ, Padberg F, Muller-Siecheneder F, Audenaert K, Van den Abbeele D, Stanga Z, Hasdemir M (2008) Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 38:651–661 Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, jmone-Marsan N, Tavazzi L, Odero A (2008) Long term vagal stimulation in patients with advanced heart failure first experience in man. Eur J Heart Fail 10:884–891 Schachter SC, Saper CB (1998) Vagus nerve stimulation. Epilepsia 39:677–686 Grimm S, Bajbouj M (2010) Efficacy of vagus nerve stimulation in the treatment of depression. Expert Rev Neurother 10:87–92 Ben-Menachem E (2002) Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 1:477–482 Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124 Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2:692–699 Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298 Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA (1994) Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239:75–87 Pauza DH, Skripka V, Pauziene N (2002) Morphology of the intrinsic cardiac nervous system in the dog: a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs 172:297–320 Pauza DH, Skripka V, Pauziene N, Stropus R (2000) Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 259:353–382 Kawano H, Okada R, Yano K (2003) Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels 18:32–39 Hou Y, Scherlag BJ, Lin J, Zhang Y, Lu Z, Truong K, Patterson E, Lazzara R, Jackman WM, Po SS (2007) Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol 50:61–68 Lin J, Scherlag BJ, Niu G, Lu Z, Patterson E, Liu S, Lazzara R, Jackman WM, Po SS (2009) Autonomic elements within the ligament of Marshall and inferior left ganglionated plexus mediate functions of the atrial neural network. J Cardiovasc Electrophysiol 20:318–324 Ardell JL, Randall WC (1986) Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol 251:H764–H773 Randall WC, Ardell JL, O’Toole MF, Wurster RD (1988) Differential autonomic control of SAN and AVN regions of the canine heart: structure and function. Prog Clin Biol Res 275:15–31 Yuan BX, Ardell JL, Hopkins DA, Armour JA (1993) Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovasc Res 27:760–769 Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, Gillis RA (1998) Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst 70:129–141 Wallick DW, Zhang Y, Tabata T, Zhuang S, Mowrey KA, Watanabe J, Greenberg NL, Grimm RA, Mazgalev TN (2001) Selective AV nodal vagal stimulation improves hemodynamics during acute atrial fibrillation in dogs. Am J Physiol 281:H1490–H1497 Zhang Y, Kei M, Mazgalev TN (2007) A novel strategy to preserve positive inotropic effects of dobutamine while avoiding sinus tachycardia: selective vagal stimulation (Abstract). Heart Rhythm 4:S172 Zhang Y, Yamada H, Bibevski S, Zhuang S, Mowrey KA, Wallick DW, Oh S, Mazgalev TN (2005) Chronic atrioventricular nodal vagal stimulation: first evidence for long-term ventricular rate control in canine atrial fibrillation model. Circulation 112:2904–2911 DiFrancesco D, Ducouret P, Robinson RB (1989) Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science 243:669–671 van Borren MM, Verkerk AO, Wilders R, Hajji N, Zegers JG, Bourier J, Tan HL, Verheijck EE, Peters SL, Alewijnse AE, Ravesloot JH (2010) Effects of muscarinic receptor stimulation on Ca2 + transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells. Basic Res Cardiol 105:73–87 Nishimura M, Habuchi Y, Hiromasa S, Watanabe Y (1988) Ionic basis of depressed automaticity and conduction by acetylcholine in rabbit AV node. Am J Physiol 255:H7–H14 Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658–687 Zhang Y, Ilsar I, Sabbah HN, Ben DT, Mazgalev TN (2009) Relationship between right cervical vagus nerve stimulation and atrial fibrillation inducibility: therapeutic intensities do not increase arrhythmogenesis. Heart Rhythm 6:244–250 Schauerte P, Scherlag BJ, Pitha J, Scherlag MA, Reynolds D, Lazzara R, Jackman WM (2000) Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 102:2774–2780 Lemola K, Chartier D, Yeh YH, Dubuc M, Cartier R, Armour A, Ting M, Sakabe M, Shiroshita-Takeshita A, Comtois P, Nattel S (2008) Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia. Circulation 117:470–477 Matheny RG, Shaar CJ (1997) Vagus nerve stimulation as a method to temporarily slow or arrest the heart. Ann Thorac Surg 63:S28–S29 Zhang Y, Mazgalev TN (2009) Cardiac vagal stimulation eliminates detrimental tachycardia effects of dobutamine used for inotropic support. Ann Thorac Surg 88:117–122 Wallick DW, Martin PJ (1990) Separate parasympathetic control of heart rate and atrioventricular conduction of dogs. Am J Physiol 259:H536–H542 Yusuf S, Camm AJ (2005) The sinus tachycardias. Nat Clin Pract Cardiovasc Med 2:44–52 Leon H, Guzman JC, Kuusela T, Dillenburg R, Kamath M, Morillo CA (2005) Impaired baroreflex gain in patients with inappropriate sinus tachycardia. J Cardiovasc Electrophysiol 16:64–68 Ardesch JJ, Buschman HP, van der Burgh PH, Wagener-Schimmel LJ, van der Aa HE, Hageman G (2007) Cardiac responses of vagus nerve stimulation: intraoperative bradycardia and subsequent chronic stimulation. Clin Neurol Neurosurg 109:849–852 Amark P, Stodberg T, Wallstedt L (2007) Late onset bradyarrhythmia during vagus nerve stimulation. Epilepsia 48:1023–1024 Tatum WO, Vale FL (2009) Vagus nerve stimulation and cardiac asystole. Epilepsia 50:2671–2672 Asconape JJ, Moore DD, Zipes DP, Hartman LM, Duffell WH Jr (1999) Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia 40:1452–1454 Tatum WO, Moore DB, Stecker MM, Baltuch GH, French JA, Ferreira JA, Carney PM, Labar DR, Vale FL (1999) Ventricular asystole during vagus nerve stimulation for epilepsy in humans. Neurology 52:1267–1269 Pachon JC, Pachon EI, Pachon JC, Lobo TJ, Pachon MZ, Vargas RN, Jatene AD (2005) “Cardioneuroablation”—new treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace 7:1–13 Prystowsky EN, Naccarelli GV, Jackman WM, Rinkenberger RL, Heger JJ, Zipes DP (1983) Enhanced parasympathetic tone shortens atrial refractoriness in man. Am J Cardiol 51:96–100 Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E (2004) Pharmacology of cardiac potassium channels. Cardiovasc Res 62:9–33 Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiol Rev 75:865–885 Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K + channel in heart. Nature 325:321–326 Rosenshtraukh LV, Zaitsev AV, Fast VG, Pertsov AM, Krinsky VI (1991) Vagally induced depression of impulse propagation as a cause of atrial tachycardia. J Mol Cell Cardiol 23(Suppl 1):3–9 Liu L, Nattel S (1997) Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol 273:H805–H816 Smeets JL, Allessie MA, Lammers WJ, Bonke FI, Hollen J (1986) The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ Res 58:96–108 Allessie M (1998) Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol 9:1378–1393 Arora R, Ulphani JS, Villuendas R, Ng J, Harvey L, Thordson S, Inderyas F, Lu Y, Gordon D, Denes P, Greene R, Crawford S, Decker R, Morris A, Goldberger J, Kadish AH (2008) Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am J Physiol Heart Circ Physiol 294:H134–H144 Wang J, Liu L, Feng J, Nattel S (1996) Regional and functional factors determining induction and maintenance of atrial fibrillation in dogs. Am J Physiol 271:H148–H158 Chen YJ, Chen YC, Yeh HI, Lin CI, Chen SA (2002) Electrophysiology and arrhythmogenic activity of single cardiomyocytes from canine superior vena cava. Circulation 105:2679–2685 Chen YJ, Chen SA, Chen YC, Yeh HI, Chang MS, Lin CI (2002) Electrophysiology of single cardiomyocytes isolated from rabbit pulmonary veins: implication in initiation of focal atrial fibrillation. Basic Res Cardiol 97:26–34 Tai CT, Chiou CW, Wen ZC, Hsieh MH, Tsai CF, Lin WS, Chen CC, Lin YK, Yu WC, Ding YA, Chang MS, Chen SA (2000) Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. J Am Coll Cardiol 36:788–793 Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968 Andrus EC, Carter EP (1930) The refractory period of the normally-beating dog’s auricle; with a note on the occurrence of auricular fibrillation following a single stimulus. J Exp Med 51:357–368 Wang Z, Page P, Nattel S (1992) Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ Res 71:271–287 Allessie MA, Lammers WJEP, Bonke FI, Holten J (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grunr & Stratton Inc., Orlando, pp 265–275 Katsouras G, Sakabe M, Comtois P, Maguy A, Burstein B, Guerra PG, Talajic M, Nattel S (2009) Differences in atrial fibrillation properties under vagal nerve stimulation versus atrial tachycardia remodeling. Heart Rhythm 6:1465–1472 Zhang Y, Scherlag BJ, Lu Z, Niu GD, Yamanashi WS, Hogan C, Fields J, Ghias M, Lazzara R, Jackman WM, Po S (2009) Comparison of atrial fibrillation inducibility by electrical stimulation of either the extrinsic or the intrinsic autonomic nervous systems. J Interv Card Electrophysiol 24:5–10 Chiou CW, Eble JN, Zipes DP (1997) Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes. The third fat pad. Circulation 95:2573–2584 Coumel P (1993) Cardiac arrhythmias and the autonomic nervous system. J Cardiovasc Electrophysiol 4:338–355 Coumel P (1994) Paroxysmal atrial fibrillation: a disorder of autonomic tone? Eur Heart J 15(Suppl A):9–16 Bettoni M, Zimmermann M (2002) Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105:2753–2759 Tomita T, Takei M, Saikawa Y, Hanaoka T, Uchikawa S, Tsutsui H, Aruga M, Miyashita T, Yazaki Y, Imamura H, Kinoshita O, Owa M, Kubo K (2003) Role of autonomic tone in the initiation and termination of paroxysmal atrial fibrillation in patients without structural heart disease. J Cardiovasc Electrophysiol 14:559–564 Fioranelli M, Piccoli M, Mileto GM, Sgreccia F, Azzolini P, Risa MP, Francardelli RL, Venturini E, Puglisi A (1999) Analysis of heart rate variability five minutes before the onset of paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 22:743–749 Coccagna G, Capucci A, Bauleo S, Boriani G, Santarelli A (1997) Paroxysmal atrial fibrillation in sleep. Sleep 20:396–398 Chen YJ, Chen SA, Tai CT, Wen ZC, Feng AN, Ding YA, Chang MS (1998) Role of atrial electrophysiology and autonomic nervous system in patients with supraventricular tachycardia and paroxysmal atrial fibrillation. J Am Coll Cardiol 32:732–738 Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G, Mazzone P, Tortoriello V, Landoni G, Zangrillo A, Lang C, Tomita T, Mesas C, Mastella E, Alfieri O (2004) Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation 109:327–334 Platt M, Mandapati R, Scherlag BJ, Yamanashi WS, Nakagawa H, Lazzara R, Jackman WM (2004) Limiting the number and extent of radiofrequency applications to terminate atrial fibrillation and subsequently prevent its inducibility. Heart Rhythm 1:S11 Scanavacca M, Pisani CF, Hachul D, Lara S, Hardy C, Darrieux F, Trombetta I, Negrao CE, Sosa E (2006) Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation 114:876–885 Scherlag BJ, Nakagawa H, Jackman WM, Yamanashi WS, Patterson E, Po S, Lazzara R (2005) Electrical stimulation to identify neural elements on the heart: their role in atrial fibrillation. J Interv Card Electrophysiol 13(Suppl 1):37–42 Pokushalov E, Romanov A, Shugayev P, Artyomenko S, Shirokova N, Turov A, Katritsis DG (2009) Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm 6:1257–1264 Katritsis D, Giazitzoglou E, Sougiannis D, Goumas N, Paxinos G, Camm AJ (2008) Anatomic approach for ganglionic plexi ablation in patients with paroxysmal atrial fibrillation. Am J Cardiol 102:330–334 Danik S, Neuzil P, d’Avila A, Malchano ZJ, Kralovec S, Ruskin JN, Reddy VY (2008) Evaluation of catheter ablation of periatrial ganglionic plexi in patients with atrial fibrillation. Am J Cardiol 102:578–583 Verma A, Saliba WI, Lakkireddy D, Burkhardt JD, Cummings JE, Wazni OM, Belden WA, Thal S, Schweikert RA, Martin DO, Tchou PJ, Natale A (2007) Vagal responses induced by endocardial left atrial autonomic ganglion stimulation before and after pulmonary vein antrum isolation for atrial fibrillation. Heart Rhythm 4:1177–1182 Melo J, Voigt P, Sonmez B, Ferreira M, Abecasis M, Rebocho M, Timoteo A, Aguiar C, Tansal S, Arbatli H, Dion R (2004) Ventral cardiac denervation reduces the incidence of atrial fibrillation after coronary artery bypass grafting. J Thorac Cardiovasc Surg 127:511–516 Oh S, Zhang Y, Bibevski S, Marrouche NF, Natale A, Mazgalev TN (2006) Vagal denervation and atrial fibrillation inducibility: epicardial fat pad ablation does not have long-term effects. Heart Rhythm 3:701–708 Sakamoto S, Schuessler RB, Lee AM, Aziz A, Lall SC, Damiano RJ Jr (2010) Vagal denervation and reinnervation after ablation of ganglionated plexi. J Thorac Cardiovasc Surg 139:444–452 Ben-Menachem E (2001) Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 18:415–418 Srinivasan B, Awasthi A (2004) Transient atrial fibrillation after the implantation of a vagus nerve stimulator. Epilepsia 45:1645 Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100:87–95 Guerra JM, Everett TH, Lee KW, Wilson E, Olgin JE (2006) Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation. Circulation 114:110–118 Shiroshita-Takeshita A, Sakabe M, Haugan K, Hennan JK, Nattel S (2007) Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation 115:310–318 Fareh S, Villemaire C, Nattel S (1998) Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation 98:2202–2209 Gaspo R, Bosch RF, Talajic M, Nattel S (1997) Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 96:4027–4035 Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, Kalman JM (2003) Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108:1461–1468 Okuyama Y, Miyauchi Y, Park AM, Hamabe A, Zhou S, Hayashi H, Miyauchi M, Omichi C, Pak HN, Brodsky LA, Mandel WJ, Fishbein MC, Karagueuzian HS, Chen PS (2003) High resolution mapping of the pulmonary vein and the vein of Marshall during induced atrial fibrillation and atrial tachycardia in a canine model of pacing-induced congestive heart failure. J Am Coll Cardiol 42:348–360 Maisel WH, Stevenson LW (2003) Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol 91:2D–8D Floras JS (1993) Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 22:72A–84A Tisdale JE, Borzak S, Sabbah HN, Shimoyama H, Goldstein S (2006) Hemodynamic and neurohormonal predictors and consequences of the development of atrial fibrillation in dogs with chronic heart failure. J Card Fail 12:747–751 Nasr IA, Bouzamondo A, Hulot JS, Dubourg O, Le Heuzey JY, Lechat P (2007) Prevention of atrial fibrillation onset by beta-blocker treatment in heart failure: a meta-analysis. Eur Heart J 28:457–462 McMurray J, Kober L, Robertson M, Dargie H, Colucci W, Lopez-Sendon J, Remme W, Sharpe DN, Ford I (2005) Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the Carvedilol Post-Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) trial. J Am Coll Cardiol 45:525–530 Zhang Y, Popovic ZB, Van Wagoner DR, Mazgalev TN (2009) Chronic cervical vagus nerve stimulation opposes atrial electrophysiological remodeling in heart failure. Heart Rhythm 6:S360–S361 Zhao Q, Tang Y, Okello E, Wang X, Huang C (2009) Changes in atrial effective refractory period and I(KACh) after vagal stimulation plus rapid pacing in the pulmonary vein. Rev Esp Cardiol 62:742–749 Mazgalev TN, Garrigue S, Mowrey KA, Yamanouchi Y, Tchou PJ (1999) Autonomic modification of the atrioventricular node during atrial fibrillation : role in the slowing of ventricular rate. Circulation 99:2806–2814 Mazgalev T, Dreifus LS, Michelson EL, Pelleg A (1986) Effect of postganglionic vagal stimulation on the organization of atrioventricular nodal conduction in isolated rabbit heart tissue. Circulation 74:869–880 Mazgalev T, Dreifus LS, Michelson EL (1988) Vagal control of the atrioventricular node–in vitro observations. I. Electrophysiological mechanism underlying the effects of brief vagal discharges on atrioventricular nodal conduction. In: Mazgalev T, Dreifus LS, Michelson EL (eds) Electrophysiology of the sinoatrial and atrioventricular nodes. Alan R. Liss Inc., New York, pp 133–154 Ali II, Pirzada NA, Kanjwal Y, Wannamaker B, Medhkour A, Koltz MT, Vaughn BV (2004) Complete heart block with ventricular asystole during left vagus nerve stimulation for epilepsy. Epilepsy Behav 5:768–771 Singleton AH, Rosenquist PB, Kimball J, McCall WV (2009) Cardiac rhythm disturbance in a depressed patient after implantation with a vagus nerve stimulator. J ECT 25:195–197 Iriarte J, Urrestarazu E, Alegre M, Macias A, Gomez A, Amaro P, Artieda J, Viteri C (2009) Late-onset periodic asystolia during vagus nerve stimulation. Epilepsia 50:928–932 Delacretaz E (2006) Clinical practice. Supraventricular tachycardia. N Engl J Med 354:1039–1051 Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Halperin JL, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation–executive summary. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines, the European Society of Cardiology Committee for Practice Guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation). Circulation 114:700–752 Imaizumi S, Mazgalev T, Dreifus LS, Michelson EL, Miyagawa A, Bharati S, Lev M (1990) Morphological and electrophysiological correlates of atrioventricular nodal response to increased vagal activity. Circulation 82:951–964 Lazzara R, Scherlag BJ, Robinson MJ, Samet P (1973) Selective in situ parasympathetic control of the canine sinoatrial and atrioventricular nodes. Circ Res 32:393–401 Furukawa Y, Wallick DW, Carlson MD, Martin PJ (1990) Cardiac electrical responses to vagal stimulation of fibers to discrete cardiac regions. Am J Physiol 258:H1112–H1118 Zhang Y, Mowrey KA, Zhuang S, Wallick DW, Popovic ZB, Mazgalev TN (2002) Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal-selective vagal stimulation. Am J Physiol Heart Circ Physiol 282:H1102–H1110 Zhuang S, Zhang Y, Mowrey KA, Li J, Tabata T, Wallick DW, Popovic ZB, Grimm RA, Natale A, Mazgalev TN (2002) Ventricular rate control by selective vagal stimulation is superior to rhythm regularization by atrioventricular nodal ablation and pacing during atrial fibrillation. Circulation 106:1853–1858 Ohad DG, Sinai Y, Zaretsky A, Shofti R (2008) Ventricular rate control using a novel vagus nerve stimulating system in a dog with chronic atrial fibrillation. J Vet Cardiol 10:147–154 Mischke K, Zarse M, Schmid M, Gemein C, Hatam N, Dohmen G, Saygili E, Knackstedt C, Weis J, Pauza D, Bianchi S, Schauerte P (2010) Chronic augmentation of the parasympathetic tone to the atrioventricular node: a nonthoracotomy neurostimulation technique for ventricular rate control during atrial fibrillation. J Cardiovasc Electrophysiol 21:193–199 Quan KJ, Lee JH, van Hare GF, Biblo LA, Mackall JA, Carlson MD (2002) Identification and characterization of atrioventricular parasympathetic innervation in humans. J Cardiovasc Electrophysiol 13:735–739 Bianchi S, Rossi P, Della SA, Kornet L, Pulvirenti R, Monari G, Di RP, Schauerte P, Azzolini P (2009) Atrioventricular (AV) node vagal stimulation by transvenous permanent lead implantation to modulate AV node function: safety and feasibility in humans. Heart Rhythm 6:1282–1286 Rossi P, Bianchi S, Barretta A, Della SA, Kornet L, De PR, Bellisario A, D’Addio V, Pavaci H, Miraldi F (2008) Post-operative atrial fibrillation management by selective epicardial vagal fat pad stimulation. J Interv Card Electrophysiol 24:37–45 Hoffman BF, Suckling EE (1953) Cardiac cellular potentials; effect of vagal stimulation and acetylcholine. Am J Physiol 173:312–320 Litovsky SH, Antzelevitch C (1990) Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 67:615–627 Zang WJ, Chen LN, Yu XJ, Fang P, Lu J, Sun Q (2005) Comparison of effects of acetylcholine on electromechanical characteristics in guinea-pig atrium and ventricle. Exp Physiol 90:123–130 Koumi S, Sato R, Nagasawa K, Hayakawa H (1997) Activation of inwardly rectifying potassium channels by muscarinic receptor-linked G protein in isolated human ventricular myocytes. J Membr Biol 157:71–81 Malfatto G, Zaza A, Vanoli E, Schwartz PJ (1996) Muscarinic effects on action potential duration and its rate dependence in canine Purkinje fibers. Pacing Clin Electrophysiol 19:2023–2026 Martins JB, Zipes DP, Lund DD (1983) Distribution of local repolarization changes produced by efferent vagal stimulation in the canine ventricles. J Am Coll Cardiol 2:1191–1199 Pickoff AS, Stolfi A (1990) Modulation of electrophysiological properties of neonatal canine heart by tonic parasympathetic stimulation. Am J Physiol 258:H38–H44 Ellenbogen KA, Smith ML, Eckberg DL (1990) Increased vagal cardiac nerve traffic prolongs ventricular refractoriness in patients undergoing electrophysiology testing. Am J Cardiol 65:1345–1350 Ng GA, Brack KE, Patel VH, Coote JH (2007) Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 73:750–760 Kolman BS, Verrier RL, Lown B (1975) The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Circulation 52:578–585 La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (autonomic tone and reflexes after myocardial infarction) investigators. Lancet 351:478–484 Lechat P, Hulot JS, Escolano S, Mallet A, Leizorovicz A, Werhlen-Grandjean M, Pochmalicki G, Dargie H (2001) Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation 103:1428–1433 Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ (1987) Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res 61:429–435 Inagaki M, Kawada T, Lie M, Zheng C, Sunagawa K, Sugimachi M (2005) Intravascular parasympathetic cardiac nerve stimulation prevents ventricular arrhythmias during acute myocardial ischemia. Conf Proc IEEE Eng Med Biol Soc 7:7076–7079 Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481 Zheng C, Li M, Inagaki M, Kawada T, Sunagawa K, Sugimachi M (2005) Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc 7:7072–7075 Billman GE, Schwartz PJ, Stone HL (1984) The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69:1182–1189 Takahashi N, Ito M, Ishida S, Fujino T, Saikawa T, Arita M (1992) Effects of vagal stimulation on cesium-induced early afterdepolarizations and ventricular arrhythmias in rabbits. Circulation 86:1987–1992 Takahashi N, Ito M, Iwao T, Ohie T, Yonemochi H, Nakagawa M, Saikawa T, Sakata T (1998) Vagal modulation of ventricular tachyarrhythmias induced by left ansae subclaviae stimulation in rabbits. Jpn Heart J 39:503–511 Waxman MB, Sharma AD, Asta J, Cameron DA, Wald RW (1989) The protective effect of vagus nerve stimulation on catecholamine-halothane-induced ventricular fibrillation in dogs. Can J Physiol Pharmacol 67:801–809 Kamibayashi T, Hayashi Y, Mammoto T, Yamatodani A, Sumikawa K, Yoshiya I (1995) Role of the vagus nerve in the antidysrhythmic effect of dexmedetomidine on halothane/epinephrine dysrhythmias in dogs. Anesthesiology 83:992–999 Miller RR, Olson HG, Vera Z, DeMaria AN, Amsterdam EA, Mason DT (1977) Clinical evaluation of the enhancement of vagal tone in acute myocardial infarction by edrophonium hydrochloride: effects on ventricular arrhythmias, His bundle electrography, and left ventricular function. Am Heart J 93:222–228 Osman F, Kundu S, Tuan J, Jeilan M, Stafford PJ, Andre NG (2010) Ganglionic plexus ablation during pulmonary vein isolation—predisposing to ventricular arrhythmias? Indian Pacing Electrophysiol J 10:104–107 Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K, Sato T (2005) Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation 112:164–170 Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 137:223–231 Brack KE, Patel VH, Coote JH, Ng GA (2007) Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol 583:695–704 Kakinuma Y, Akiyama T, Sato T (2009) Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J 276:5111–5125 Podrid PJ, Fogel RI, Fuchs TT (1992) Ventricular arrhythmia in congestive heart failure. Am J Cardiol 69:82G–95G Maskin CS, Siskind SJ, LeJemtel TH (1984) High prevalence of nonsustained ventricular tachycardia in severe congestive heart failure. Am Heart J 107:896–901 Olshausen KV, Witt T, Pop T, Treese N, Bethge KP, Meyer J (1991) Sudden cardiac death while wearing a Holter monitor. Am J Cardiol 67:381–386 Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72:681–685 Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 334:1349–1355 Hjalmarson A, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, Wikstrand J, El Allaf D, Vitovec J, Aldershvile J, Halinen M, Dietz R, Neuhaus KL, Janosi A, Thorgeirsson G, Dunselman PH, Gullestad L, Kuch J, Herlitz J, Rickenbacher P, Ball S, Gottlieb S, Deedwania P (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 283:1295–1302 CIBIS-II Investigators and Committees (1999) The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353:9–13 Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717 Zhang Y, Zhu J, Song Y (1998) Suppressing sympathetic activation with clonidine on ventricular arrhythmias in congestive heart failure. Int J Cardiol 65:233–238 Kasanuki H, Ohnishi S, Ohtuka M, Matsuda N, Nirei T, Isogai R, Shoda M, Toyoshima Y, Hosoda S (1997) Idiopathic ventricular fibrillation induced with vagal activity in patients without obvious heart disease. Circulation 95:2277–2285 Mizumaki K, Fujiki A, Tsuneda T, Sakabe M, Nishida K, Sugao M, Inoue H (2004) Vagal activity modulates spontaneous augmentation of ST elevation in the daily life of patients with Brugada syndrome. J Cardiovasc Electrophysiol 15:667–673 Antzelevitch C (2006) Brugada syndrome. Pacing Clin Electrophysiol 29:1130–1159 Kaufman ES (2009) Mechanisms and clinical management of inherited channelopathies: long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. Heart Rhythm 6:S51–S55 Flaim SN, McCulloch AD (2007) Acetylcholine-induced shortening of the epicardial action potential duration may increase repolarization gradients and LQT3 arrhythmic risk. J Electrocardiol 40:S66–S69 Shalaby AA, El-Saed A, Nemec J, Moossy JJ, Balzer JR (2007) Exacerbation of electrical storm subsequent to implantation of a right vagal stimulator. Clin Auton Res 17:385–390 De Ferrari GM, Schwartz PJ (to be accepted) Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev