Aronson–Bénilan and Harnack estimates for the discrete porous medium equation
Tài liệu tham khảo
Aronson, 1979, Régularité des solutions de l’équation des milieux poreux dans Rn, C. R. Acad. Sci. Paris Sér. A-B, 288, 103
Auchmuty, 1994, Harnack-type inequalities for evolution equations, Proc. Amer. Math. Soc., 122, 117, 10.1090/S0002-9939-1994-1219716-X
Bakry, 2017, The Li-Yau inequality and applications under a curvature-dimension condition, Ann. Inst. Fourier (Grenoble), 67, 397, 10.5802/aif.3086
Bakry, 2014, vol. 348
Bakry, 2006, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoam., 22, 683, 10.4171/RMI/470
Bauer, 2015, Li-Yau inequality on graphs, J. Differ. Geom., 99, 359, 10.4310/jdg/1424880980
Bianchi, 2022, The generalized porous medium equation on graphs: existence and uniqueness of solutions with ℓ1 data, Calc. Var. Partial Differential Equations, 61, 10.1007/s00526-022-02249-w
Cao, 2015, Aronson-Bénilan estimates for the porous medium equation under the Ricci flow, J. Math. Pures Appl., 104, 729, 10.1016/j.matpur.2015.05.001
Dier, 2021, Discrete versions of the Li-Yau gradient estimate, Ann. Sc. Norm. Super. Pisa Cl. Sci., 22, 691
Erbar, 2014, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34, 1355, 10.3934/dcds.2014.34.1355
Kräss, 2022
Li, 2012
Li, 1986, On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 153, 10.1007/BF02399203
Lu, 2009, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl., 91, 1, 10.1016/j.matpur.2008.09.001
Münch, 2017, Remarks on curvature dimension conditions on graphs, Calc. Var. Partial Differential Equations, 56, 10.1007/s00526-016-1104-6
Münch, 2018, Li-Yau inequality on finite graphs via non-linear curvature dimension conditions, J. Math. Pures Appl., 120, 130, 10.1016/j.matpur.2018.10.006
Otto, 2001, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26, 101, 10.1081/PDE-100002243
Spener, 2019, Curvature-dimension inequalities for non-local operators in the discrete setting, Calc. Var. Partial Differential Equations, 58, 10.1007/s00526-019-1616-y
Vázquez, 2007
Weber, 2021, Entropy-information inequalities under curvature-dimension conditions for continuous-time Markov chains, Electron. J. Probab., 26, 10.1214/21-EJP627
Weber, 2021, The entropy method under curvature-dimension conditions in the spirit of Bakry-Émery in the discrete setting of Markov chains, J. Funct. Anal., 281, 10.1016/j.jfa.2021.109061