Aronson–Bénilan and Harnack estimates for the discrete porous medium equation

Sebastian Kräss1, Rico Zacher1
1Institute of Applied Analysis, Ulm University, Helmholtzstraße 18, 89081 Ulm, Germany

Tài liệu tham khảo

Aronson, 1979, Régularité des solutions de l’équation des milieux poreux dans Rn, C. R. Acad. Sci. Paris Sér. A-B, 288, 103 Auchmuty, 1994, Harnack-type inequalities for evolution equations, Proc. Amer. Math. Soc., 122, 117, 10.1090/S0002-9939-1994-1219716-X Bakry, 2017, The Li-Yau inequality and applications under a curvature-dimension condition, Ann. Inst. Fourier (Grenoble), 67, 397, 10.5802/aif.3086 Bakry, 2014, vol. 348 Bakry, 2006, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoam., 22, 683, 10.4171/RMI/470 Bauer, 2015, Li-Yau inequality on graphs, J. Differ. Geom., 99, 359, 10.4310/jdg/1424880980 Bianchi, 2022, The generalized porous medium equation on graphs: existence and uniqueness of solutions with ℓ1 data, Calc. Var. Partial Differential Equations, 61, 10.1007/s00526-022-02249-w Cao, 2015, Aronson-Bénilan estimates for the porous medium equation under the Ricci flow, J. Math. Pures Appl., 104, 729, 10.1016/j.matpur.2015.05.001 Dier, 2021, Discrete versions of the Li-Yau gradient estimate, Ann. Sc. Norm. Super. Pisa Cl. Sci., 22, 691 Erbar, 2014, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34, 1355, 10.3934/dcds.2014.34.1355 Kräss, 2022 Li, 2012 Li, 1986, On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 153, 10.1007/BF02399203 Lu, 2009, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, J. Math. Pures Appl., 91, 1, 10.1016/j.matpur.2008.09.001 Münch, 2017, Remarks on curvature dimension conditions on graphs, Calc. Var. Partial Differential Equations, 56, 10.1007/s00526-016-1104-6 Münch, 2018, Li-Yau inequality on finite graphs via non-linear curvature dimension conditions, J. Math. Pures Appl., 120, 130, 10.1016/j.matpur.2018.10.006 Otto, 2001, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26, 101, 10.1081/PDE-100002243 Spener, 2019, Curvature-dimension inequalities for non-local operators in the discrete setting, Calc. Var. Partial Differential Equations, 58, 10.1007/s00526-019-1616-y Vázquez, 2007 Weber, 2021, Entropy-information inequalities under curvature-dimension conditions for continuous-time Markov chains, Electron. J. Probab., 26, 10.1214/21-EJP627 Weber, 2021, The entropy method under curvature-dimension conditions in the spirit of Bakry-Émery in the discrete setting of Markov chains, J. Funct. Anal., 281, 10.1016/j.jfa.2021.109061