Aromatic amino acid aminotransferases in plants

Springer Science and Business Media LLC - Tập 17 - Trang 131-159 - 2017
Minmin Wang1, Hiroshi A. Maeda1
1Department of Botany, University of Wisconsin-Madison, Madison, USA

Tóm tắt

Aromatic amino acid aminotransferases (AAA-ATs) catalyze the reversible transamination reactions of proteinogenic and non-proteinogenic aromatic amino acids to corresponding keto acids and vice versa. The products of plant AAA-ATs serve as key precursors of many primary and secondary metabolites that are crucial for both plant and human metabolism and physiology. In most microbes, l-tyrosine (Tyr) and l-phenylalanine (Phe) aminotransferases (Tyr and Phe-ATs) catalyze the final steps of Phe and Tyr biosynthesis. On the other hand, plants use different pathways to synthesize Tyr and Phe via arogenate, in which prephenate-specific aminotransferases (PPA-ATs) catalyze the committed step in the plastids. Plant Tyr and Phe-ATs, unlike microbial counterparts, often prefer the reverse reactions and metabolize Tyr and Phe to their respective aromatic keto acids, which serve as precursors of various plant natural products (e.g. benzenoid volatiles, tocochromanols, plastoquinone, and tropane and benzylisoquinoline alkaloids). Unlike plastidic PPA-ATs, plant Tyr/Phe-ATs are localized outside of the plastids, have broad substrate specificity, and interlink Tyr and Phe metabolism. l-Tryptophan (Trp) aminotransferases (Trp-ATs) are involved in biosynthesis of the plant hormone auxin. Although significant advancement has been made on biochemical, molecular, and genetic characterizations of plant AAA-ATs, there are still many critical knowledge gaps, which are highlighted in the current review.

Tài liệu tham khảo

Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM (2012) A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol Plant 146:487–499. doi:10.1111/j.1399-3054.2012.01649.x Almo SC, Smith DL, Danishefsky AT, Ringe D (1994) The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Protein Eng Des Sel 7:405–412. doi:10.1093/protein/7.3.405 Aniszewski T (2015) Alkaloids: chemistry, biology, ecology, and applications, 2nd edn. Elsevier, Amsterdam, Netherlands Bagge P, Larsson C (1986) Biosynthesis of aromatic amino acids by highly purified spinach chloroplasts—compartmentation and regulation of the reactions. Physiol Plant 68:641–647 Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone A biosynthesis through l-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3:584–592. doi:10.1038/nchembio.2007.20 Barros J, Serrani-Yarce JC, Chen F et al (2016) Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat Plants 2:16050. doi:10.1038/nplants.2016.50 Beaudoin GAW, Facchini PJ (2014) Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240:19–32. doi:10.1007/s00425-014-2056-8 Bedewitz MA, Gongora-Castillo E, Uebler JB et al (2014) A root-expressed l-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. Plant Cell 26:3745–3762. doi:10.1105/tpc.114.130534 Benesova M, Bode R (1992) Chorismate mutase isoforms from seeds and seedlings of Papaver somniferum. Phytochemistry 31:2983–2987 Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion of 13C in lignin and its implication for stable carbon isotope studies. Nature 329:708–710. doi:10.1038/329708a0 Bentley R (1990) The shikimate pathway—a metabolic tree with many branches. Crit Rev Biochem Mol Biol 25:307–384 Berger BJ, English S, Chan G et al (2003) Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol 185:2418–2431. doi:10.1128/JB.185.8.2418 Binder S (2010) Branched-chain amino acid metabolism. Arabidopsis Book 8:e0137 Bhattacharya D, Medlin AL (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15. doi:10.1104/pp.116.1.9 Bickel H, Palme L, Schultz G (1978) Incorporation of shikimate and other precursor into aromatic amino acids and prenylquinones of isolated spinach chloroplasts. Phytochemistry 17:119–124 Blankenfeldt W, Nowicki C, Montemartini-Kalisz M et al (1999) Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode. Protein Sci 8:2406–2417. doi:10.1110/ps.8.11.2406 Bohlmann J, Deluca Y, Eilert U, Martin W (1995) Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression and properties of native and recombinant enzymes. Plant J 7:491–501 Boller T, Herner RC, Kende H (1979) Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145:293–303. doi:10.1007/BF00454455 Bonner CA, Jensen RA (1985) Novel features of prephenate aminotransferase from cell cultures of Nicotiana silvesfris. Arch Biochem Biophys 238:237–246 Bonner CA, Jensen RA (1987) A selective assay for prephenate aminotransferase activity in suspension-cultured cells of Nicotiana silvestris. Planta 172:417–423 Bridle P, Timberlake CF (1997) Anthocyanins as natural food colours—selected aspects. Food Chem 58:103–109. doi:10.1016/S0308-8146(96)00222-1 Bross CD, Howes TR, Abolhassani Rad S et al (2017) Subcellular localization of Arabidopsis arogenate dehydratases suggests novel and non-enzymatic roles. J Exp Bot 68:1425–1440. doi:10.1093/jxb/erx024 Byng G, Whitaker RJ, Shapiro CL, Jensen RA (1981) The aromatic amino acid pathway branches at l-arogenate in Euglena gracilis. Mol Cell Biol 1:426–438 Cho MH, Corea ORA, Yang H et al (2007) Phenylalanine biosynthesis in Arabidopsis thaliana: Identification and characterization of arogenate dehydratases. J Biol Chem 282:30827–30835. doi:10.1074/jbc.M702662200 Chourey PS, Li QB, Kumar D (2010) Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Mol Plant 3:1026–1036. doi:10.1093/mp/ssq057 Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. Biochim Biophys Acta 67:104–137 Colquhoun TA, Schimmel BCJ, Kim JY et al (2010) A petunia chorismate mutase specialized for the production of floral volatiles. Plant J 61:145–155. doi:10.1111/j.1365-313X.2009.04042.x Cooper AJL (2004) The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 44:557–577. doi:10.1016/j.neuint.2003.12.002 Cooper AJL, Pinto JT, Krasnikov BF et al (2008) Substrate specificity of human glutamine transaminase K as an aminotransferase and as a cysteine S-conjugate β-lyase. Arch Biochem Biophys 474:72–81. doi:10.1016/j.abb.2008.02.038 Cotton RGH, Gibson F (1965) The biosynthesis of phenylalanine and tyrosine; enzymes converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase. Biochim Biophys Acta Gen Subj 100:76–88. doi:10.1016/0304-4165(65)90429-0 Craven-Bartle B, Pascual MB, Cánovas FM, Ávila C (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J 74:755–766. doi:10.1111/tpj.12158 Dal Cin V, Tieman DM, Tohge T et al (2011) Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. Plant Cell 23:2738–2753. doi:10.1105/tpc.111.086975 Davidson BE, Hudson GS (1987) Chorismate mutase-prephenate dehydrogenase from Escherichia coli. 142:440–450 de la Torre F, De Santis L, Suárez MF et al (2006) Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J 46:414–425. doi:10.1111/j.1365-313X.2006.02713.x de la Torre F, Suarez MF, De Santis L, Canovas FM (2007) The aspartate aminotransferase family in conifers: biochemical analysis of a prokaryotic-type enzyme from maritime pine. Tree Physiol 27:1283–1291 de la Torre F, Moya-Garcia AA, Suarez M-F et al (2009) Molecular modeling and site-directed mutagenesis reveal essential residues for catalysis in a prokaryote-type aspartate aminotransferase. Plant Physiol 149:1648–1660. doi:10.1104/pp.108.134510 de la Torre F, El-Azaz J, Avila C, Cánovas FM (2014) Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. Plant Physiol 164:92–104. doi:10.1104/pp.113.232462 De-Eknamkul W, Ellis BE (1987) Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26:1941–1946. doi:10.1016/S0031-9422(00)81734-3 De-Eknamkul W, Ellis E (1988) Purification and characterization of prephenate aminotransferase from Anchusa officinalis cell cultures. Arch Biochem Biophys 267:87–94 Diebold R, Schuster J, Däschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550. doi:10.1104/pp.001602 Dixon DP, Edwards R (2006) Enzymes of tyrosine catabolism in Arabidopsis thaliana. Plant Sci 171:360–366. doi:10.1016/j.plantsci.2006.04.008 Dornfeld C, Weisberg AJ, K C R et al (2014) Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway. Plant Cell 26:3101–3114. doi:10.1105/tpc.114.127407 Eberhard J, Bischoff M, Raesecke HR et al (1996a) Isolation of a cDNA from tomato coding for an unregulated, cytosolic chorismate mutase. Plant Mol Biol 31:917–922 Eberhard J, Ehrler TT, Epple P et al (1996b) Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties. Plant J 10:815–821 El Bahr MK, Kutáček M, Opatrný Z (1987) l-tryptophan aminotransferase and l-tryptophan dehydrogenase, enzymes of IAA synthesis, in normal and tumorous tobacco tissue cultures. Biochem und Physiol der Pflanz 182:213–222. doi:10.1016/S0015-3796(87)80047-1 Ellens KW, Richardson LGL, Frelin O et al (2015) Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. Phytochemistry 113:160–169. doi:10.1016/j.phytochem.2014.04.012 Ellis BE, De-Eknamkul W (1987) Purification and characterization of tyrosine aminotransferase from Anchusa officinalis cell cultures. Arch Biochem Biophys 257:430–438 Euverink GJ, Wolters DJ, Dijkhuizen L (1995) Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins. Biochem J 308(Pt 1):313–320 Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66. doi:10.1146/annurev.arplant.52.1.29 Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566. doi:10.1093/jxb/erq030 Fiedler E, Soll J, Schultz G (1982) The formation of homogentisate in the biosynthesis of tocopherol and plastoquinone in spinach chloroplasts. Planta 155:511–515. doi:10.1007/BF01607575 Forest J, Wightman F (1972) Amino acid metabolism in plants. III. purification and some properties of a multispecific aminotransferase isolated from bushbean seedlings (Phseolus vulgaris L.). Can J Biochem 50:813–829 Forest JC, Wightman F (1973) Amino acid metabolism in plants. IV. Kinetic studies with a multispecific aminotransferase purified from bushbean seedlings (Phaseolus vulgaris L.). Can J Biochem 51:332–343 Franklin KA, Lee SH, Patel D et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235. doi:10.1073/pnas.1110682108 Funakoshi M, Sekine M, Katane M et al (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase—d-aspartate behavior during germination. FEBS J 275:1188–1200. doi:10.1111/j.1742-4658.2008.06279.x Gamborg OL (1965) Transamination in plants: the specificity of an aminotransferase from mung Bean. Can J Biochem 43:723–730 Gamborg OL, Wetter LR (1963) An aromatic amino acid transaminase from mung bean. Can J Biochem 41:1733–1740 Gamburg KZ, Gluzdo OV, Rekoslavskaya NI (1993) The content of N-malonyl-d-tryptophan in wheat seedlings. Plant Sci 88:121–124 Gandía-Herrero F, García-Carmona F (2013) Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci 18:334–343. doi:10.1016/j.tplants.2013.01.003 Garcia I, Rodgers M, Lenne C et al (1997) Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325:761–769 Gelfand DH, Steinberg RA (1977) Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol 130:429–440 Gonda I, Bar E, Portnoy V et al (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61:1111–1123. doi:10.1093/jxb/erp390 Graindorge M, Giustini C, Jacomin AC et al (2010) Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: the last homeless enzyme of aromatic amino acids biosynthesis. FEBS Lett 584:4357–4360. doi:10.1016/j.febslet.2010.09.037 Graindorge M, Giustini C, Kraut A et al (2014) Three different classes of aminotransferases evolved prephenate aminotransferase functionality in arogenate-competent microorganisms. J Biol Chem 289:3198–3208. doi:10.1074/jbc.M113.486480 Grossmann K, Hutzler J, Tresch S et al (2012) On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1, 2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase. Pest Manag Sci 68:482–492. doi:10.1002/ps.2319 Guyer D, Patton D, Ward E (1995) Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc Natl Acad Sci USA 92:4997–5000. doi:10.1073/pnas.92.11.4997 Han Q, Robinson H, Cai T et al (2009) Biochemical and structural properties of mouse kynurenine aminotransferase III. Mol Cell Biol 29:784–793. doi:10.1128/MCB.01272-08 Han Q, Cai T, Tagle DA, Li J (2010) Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol Life Sci 67:353–368. doi:10.1007/s00018-009-0166-4 Han Q, Robinson H, Cai T et al (2011) Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV. Biosci Rep 31:323–332. doi:10.1042/BSR20100117 Heilbronn J, Wilson J, Berger BJ (1999) Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. J Bacteriol 181:1739–1747 Hirata H, Ohnishi T, Ishida H et al (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169:444–451. doi:10.1016/j.jplph.2011.12.005 Hirata H, Ohnishi T, Watanabe N (2016) Biosynthesis of floral scent 2-phenylethanol in rose flowers. Biosci Biotechnol Biochem 80:1865–1873. doi:10.1080/09168451.2016.1191333 Holländer-Czytko H, Grabowski J, Sandorf I et al (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770. doi:10.1016/j.jplph.2005.04.019 Huang B, Yi B, Duan Y et al (2008) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35:601–612. doi:10.1007/s11033-007-9130-2 Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42:97–108. doi:10.1007/s11745-007-3028-6 Jensen RA (1969) Metabolic interlock. J Biol Chem 11:2816–2823 Jensen RA (1986) Tyrosine and phenylalanine biosynthesis: relationship between alternative pathways, regulation and subcellular location. Recent Adv Phytochem 20:57–81 Jensen RA, Gu W (1996) Evolutionary recruitment of biochemically specialized subdivisions of family I within the protein superfamily of aminotransferases. J Bacteriol 178:2161–2171 Jindra A, Kovacs P, Pittnerova Z, Psenak M (1966) Biochemical aspects of the biosynthesis of opium alkaloids. Phytochemistry 5:1303–1315 John RA (1995) Pyridoxal phosphate-dependent enzymes. Biochim Biophys Acta 1248:81–96. doi:10.1016/0167-4838(95)00025-P Jones PR, Manabe T, Awazuhara M, Saito K (2003) A new member of plant CS-lyases: a cystine lyase from Arabidopsis thaliana. J Biol Chem 278:10291–10296. doi:10.1074/jbc.M212207200 Joyard J, Ferro M, Masselon C et al (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180. doi:10.1093/mp/ssp088 Jung E, Zamir LO, Jensen RA (1986) Chloroplasts of higher plants synthesize l-phenylalanine via L-arogenate. Proc Natl Acad Sci USA 83:7231–7235. doi:10.1073/pnas.83.19.7231 Kamitori S, Okamoto A, Hirotsu K et al (1990) Three-dimensional structures of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 A resolution. J Biochem 108:175–184 Karlberg T, Moche M, Andersson J, et al (2008) 3DYD: Human tyrosine aminotransferase. In: Protein Data Bank. http://www.rcsb.org/pdb/explore/explore.do?structureId=3DYD Kilpatrick K, Pajak A, Hagel JM et al (2016) Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 48:1209–1220. doi:10.1007/s00726-015-2156-1 Kishor PBK (1989) Activities of phenylalanine- and tyrosine-ammonia lyases and aminotransferases during organogenesis in callus cultures of rice. Plant Cell Physiol 30:25–29 Klein AP, Sattely ES (2017) Biosynthesis of cabbage phytoalexins from indole glucosinolate. Proc Natl Acad Sci USA 114:1910–1915. doi:10.1073/pnas.1615625114 Knill T, Schuster J, Reichelt M et al (2008) Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol 146:1028–1039 Ko TP, Wu SP, Yang WZ, Tsai H, Yuan HS (1999) Crystallization and preliminary crystallographic analysis of the Escherichia coli tyrosine aminotransferase. Acta Crystallogr D Biol Crystallogr 55:1474–1477 Kochevenko A, Klee HJ, Fernie AR, Araújo WL (2012) Molecular identification of a further branched-chain aminotransferase 7 (BCAT7) in tomato plants. J Plant Physiol 169:437–443. doi:10.1016/j.jplph.2011.12.002 Koshiba T, Mito N, Miyakado M (1993) l- and d-tryptophan aminotransferases from maize coleoptiles. J Plant Res 106:25–29. doi:10.1007/BF02344369 Kriechbaumer V, Weigang L, Fiesselmann A et al (2008) Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biol 8:44. doi:10.1186/1471-2229-8-44 Kriechbaumer V, Seo H, Park WJ, Hawes C (2015) Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes. J Exp Bot 66:6009–6020. doi:10.1093/jxb/erv314 Kuramitsu S, Hiromi K, Hayashi H et al (1990) Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity. Biochemistry 29:5469–5476. doi:10.1021/bi00475a010 Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070. doi:10.1105/tpc.7.7.1059 Lacan G, Magnus V, Jericevic B et al (1984) Formation of tryptophol galactoside and an unknown tryptophol ester in Euglena gracilis. Plant Physiol 76:889–893. doi:10.1104/pp.76.4.889 Lacan G, Magnus V, Simaga S et al (1985) Metabolism of tryptophol in higher and lower plants. Plant Physiol 78:447–454. doi:10.1104/pp.78.3.447 Lächler K, Imhof J, Reichelt M et al (2015) The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. Plant Mol Biol 88:119–131. doi:10.1007/s11103-015-0312-3 Last RL, Bissinger PH, Mahoney DJ et al (1991) Tryptophan mutants in arabidopsis: the consequences of duplicated tryptophan synthase β genes. Plant Cell 3:345–358. doi:10.1105/tpc.3.4.345 Law DM (1987) Gibberellin-enhanced indole-3-acetic acid biosynthesis: d-tryptophan as tbe precursor of indole-3-acetic acid. Physiol Plant 70:626–632 Lee E-J, Facchini PJ (2011) Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiol 157:1067–1078. doi:10.1104/pp.111.185512 Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330. doi:10.1104/pp.108.115733 Less H, Galili G (2009) Coordinations between gene modules control the operation of plant amino acid metabolic networks. BMC Syst Biol 3:14. doi:10.1186/1752-0509-3-14 Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498. doi:10.1046/j.1365-313x.2001.00961.x Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265. doi:10.1016/j.pbi.2007.04.006 Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. doi:10.1146/annurev-arplant-042811-105439 Maeda H, Shasany AK, Schnepp J et al (2010) RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Plant Cell 22:832–849 Maeda H, Yoo H, Dudareva N (2011) Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nat Chem Biol 7:19–21. doi:10.1038/nchembio.485 Mannhaupt G, Stucka R, Pilz U et al (1989) Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Gene 85:303–311. doi:10.1016/0378-1119(89)90422-8 Matheron ME, Moore TC (1973) Properties of an aminotransferase of pea (Pisum sativum L.). Plant Physiol 52:63–67 McGary KL, Slot JC, Rokas A (2013) Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proc Natl Acad Sci USA 110:11481–11486. doi:10.1073/pnas.1304461110 McQueen-Mason SJ, Hamilton RH (1989) The biosynthesis of indole-3-acetic acid from d-tryptophan in Alaska pea plastids. Plant Cell Physiol 30:999–1005 Mehere P, Han Q, Lemkul JA et al (2010) Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations. Protein Cell 1:1023–1032. doi:10.1007/s13238-010-0128-5 Mehrshahi P, Johnny C, DellaPenna D (2014) Redefining the metabolic continuity of chloroplasts and ER. Trends Plant Sci 19:501–507. doi:10.1016/j.tplants.2014.02.013 Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561. doi:10.1111/j.1432-1033.1993.tb17953.x Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C–S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777. doi:10.1111/j.1365-313X.2003.02002.x Minh TH, Kutacek M, Sebanek J (1984) Growth-correlative effect of the root on the apical part of the epicotyl in pea seedlings regarding the IAA content and l-tryptophan aminotransferase and l-tryptophan dehydrogenase activities. Biol Plant 26:342–348 Miura GA, Mills SE (1971) The conversion of d-tryptophan to l-tryptophan in cell cultures of tobacco. Plant Physiol 47:483–487 Miyazaki JH, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69:366–370. doi:10.1111/j.1399-3054.1987.tb04302.x Mizukami H, Tabira Y, Ellis BE (1993) Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep 12:706–709 Møller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13:338–347. doi:10.1016/j.pbi.2010.01.009 Nakai T, Okada K, Akutsu S et al (1999) Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Biochemistry 38:2413–2424. doi:10.1021/bi9819881 Nawy T, Lee J-Y, Colinas J et al (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925. doi:10.1105/tpc.105.031724 Nobe Y, Kawaguchi S, Ura H et al (1998) The Novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8. J Biol Chem 273:29554–29564. doi:10.1074/jbc.273.45.29554 Noguchi T, Hayashi S (1980) Peroxisomal localization and properties of tryptophan aminotransferase in plant leaves. J Biol Chem 255:2267–2269 Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323. doi:10.1104/pp.117.4.1317 Nowickia C, Huntera GR, Montemartini-Kaliszb M et al (2001) Recombinant tyrosine aminotransferase from Trypanosoma cruzi: structural characterization and site directed mutagenesis of a broad substrate specificity enzyme. Biochim Biophys Acta 1546:268–281 Okada K, Hirotsu K, Sato M et al (1997) Three-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 A resolution. J Biochem 121:637–641 Onuffer JJ, Kirsch JF (1995) Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Protein Sci 4:1750–1757. doi:10.1002/pro.5560040910 Pagnussat GC, Yu H-J, Ngo QA et al (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614. doi:10.1242/dev.01595 Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36:2295–2300. doi:10.1093/nar/gkn072 Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125 Phillips KA, Skirpan AL, Liu X et al (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566. doi:10.1105/tpc.110.075267 Prabhu PR, Hudson AO (2010) Identification and partial characterization of an l-tyrosine aminotransferase (TAT) from Arabidopsis thaliana. Biochem Res Int 2010:549572. doi:10.1155/2010/549572 Preuss J, Hort W, Lang S et al (2013) Characterization of tryptophan aminotransferase 1 of Malassezia furfur, the key enzyme in the production of indolic compounds by M. furfur. Exp Dermatol 22:736–741. doi:10.1111/exd.12260 Rajagopal R (1967) Occurrence of indoleacetaldehyde and tryptophol in the extracts of etiolated shoots of Pisum and Helianthus. Physiol Plant 20:655–660 Rajagopal R (1968) Occurrence and metabolism of indoleacetaldehyde in certain higher plant tissues under aseptic conditions. Physiol Plant 21:378–385 Rayle DL, Purves WK (1967) Isolation and identification of indole-3-ethanol (tryptophol) from cucumber seedlings. Plant Physiol 42:520–524 Razal RA, Ellis S, Singh S et al (1996) Nitrogen recycling in phenylpropanoid metabolism. Phytochemistry 41:31–35. doi:10.1016/S0176-1617(98)80157-0 Rekoslavskaya NI (1986) Possible role of N-malonyl-d-tryptophan as an auxin precursor. Biol Plant 28:62–67 Rekoslavskaya NI, Markova TA, Gamburg KZ (1988) Appearance of N-malonyl-d-tryptophan in excised leaves during wilting. 1. The content of tryptophan and N-malonyl-d-tryptophan an affected by water deficit. J Plant Physiol 132:86–89. doi:10.1016/S0176-1617(88)80188-3 Rekoslavskaya NI, Yurjeva OV, Salyaev RK et al (1999) d-tryptophan as IAA source during wheat germination. Bulg J Plant Physiol 25:39–49 Rettenmeier R, Natt E, Zentgraf H, Scherer G (1990) Isolation and characterization of the human tyrosine aminotransferase gene. Nucleic Acids Res 18:3853–3861 Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi:10.1016/S1360-1385(97)01018-2 Riewe D, Koohi M, Lisec J et al (2012) A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J 71:850–859. doi:10.1111/j.1365-313X.2012.05035.x Rippert P, Matringe M (2002) Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains. Plant Mol Biol 48:361–368 Rippert P, Puyaubert J, Grisollet D et al (2009) Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis. Plant Physiol 149:1251–1260. doi:10.1104/pp.108.130070 Rijnen L, Bonneau S, Yvon M (1999) Genetic characterization of the major Lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl Environ Microbiol 65:4873–4880 Robins RJ (1998) The tropane alkaloids. In: Roberts MF, Wink M (eds) Alkaloids: biochemistry, ecology, and medicinal applications. Springer, Berlin, pp 205–212 Robinson T (1976) d-amino acids in higher plants. Life Sci 19:1097–1102. doi:10.1016/0024-3205(76)90244-7 Rose AB, Casselman AL, Last RL (1992) A phosphoribosylanthranilate transferase gene is defective in blue fluorescent Arabidopsis thaliana tryptophan mutants. Plant Physiol 100:582–592. doi:10.1104/pp.100.2.582 Rossi F, Han Q, Li J et al (2004) Crystal structure of human kynurenine aminotransferase I. J Biol Chem 279:50214–50220. doi:10.1074/jbc.M409291200 Rossi F, Garavaglia S, Montalbano V et al (2008) Crystal structure of human kynurenine aminotransferase II, a drug target for the treatment of schizophrenia. J Biol Chem 283:3559–3566. doi:10.1074/jbc.M707925200 Rubin JL, Jensen RA (1979) Enzymology of l-tyrosine biosynthesis in mung bean (Vigna radiata [L.] Wilczek). Plant Physiol 64:727–734 Rueffer M, Zenk MH (1987) Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Zeitschrift für Naturforsch C 42:319–332 Sauter M, Moffatt B, Saechao MC et al (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451:145–154. doi:10.1042/BJ20121744 Schenck CA, Chen S, Siehl DL, Maeda HA (2015) Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nat Chem Biol 11:52–57. doi:10.1038/nchembio.1693 Schulze-Siebert D, Homeyer U, Soll J, Schultz G (1987) Synthesis of plastoquinone-9, alpha-tocopherol and phylloquinone (vitamin K1) and its integration in chloroplast carbon metabolism of higher plants. In: Stumpf P, Mudd J, Nes W (eds) The metabolism, structure, and function of plant lipids. Plenum Press, New York, pp 29–36 Schuster J, Knill T, Reichelt M et al (2006) Branched-chain aminotransferase 4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. Plant Cell 18:2664–2679. doi:10.1105/tpc.105.039339 Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477 Schenck CA, Holland CK, Schneider MR, Men Y, Lee SG, Jez JM, Maeda HA (2017) Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nat Chem Biol. doi:10.1038/nchembio.2414 Schultz CJ, Coruzzi GM (1995) The aspartate aminotransferase gene family of Arabidopsis encodes isoenzymes localized to three distinct subcellular compartments. Plant J 7:61–75 Schultz CJ, Hsu M, Miesak B, Coruzzi GM (1998) Arabidopsis mutants define an in vivo role for isoenzymes of aspartate aminotransferase in plant nitrogen assimilation. Genetics 149:491–499 Siehl DL, Connelly JA, Conn EE (1986a) Tyrosine biosynthesis in Sorghum bicolor: characteristics of prephenate aminotransferase. Zeitschrift für Naturforsch C 41:79–86 Siehl DL, Singh BK, Conn EE (1986b) Tissue distribution and subcellular localization of prephenate aminotransferase in leaves of Sorghum bicolor. Plant Physiol 81:711–713. doi:10.1104/pp.81.2.711 Siehl DL, Tao Y, Albert H et al (2014) Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol. doi:10.1104/pp.114.247205 Simpson RM, Nonhebel HM, Christie DL (1997) Partial purification and characterisation of an aromatic amino acid aminotransferase from mung bean (Vigna radiata L. Wilczek). Planta 201:71–77 Soll J, Schultz G (1980) 2-Methyl-6-phytylquinol and 2,3-dimethy-5-phytylquinol as precursors of tocopherol synthesis in spinach chloroplasts. Phytochemistry 19:215–218 Soll J, Schultz G, Joyard J et al (1985) Localization and synthesis of prenylquinones in isolated outer envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238:290–299 Stacey MG, Cahoon RE, Nguyen HT et al (2016) Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds. Plant Physiol 172:1506–1518. doi:10.1104/pp.16.00941 Stepanova AN, Robertson-Hoyt J, Yun J et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191. doi:10.1016/j.cell.2008.01.047 Sumaryono W, Proksch P, Hartmann T et al (1991) Induction of rosmarinic acid accumulation in cell suspension cultures of Orthosiphon aristatus after treatment with yeast extract. Phytochemistry 30:3267–3271. doi:10.1016/0031-9422(91)83190-V Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 Tao Y, Ferrer JL, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176. doi:10.1016/j.cell.2008.01.049 Taylor DC, Wightman F (1987) Metabolism of d, l-chloro-phenylalanines by phenylalanine aminotransferase isozymes purified from bushbean shoots. Phytochemistry 26:1279–1288. doi:10.1016/S0031-9422(00)81795-1 Toney MD (2005) Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 433:279–287. doi:10.1016/j.abb.2004.09.037 Toney MD (2014) Aspartate aminotransferase: an old dog teaches new tricks. Arch Biochem Biophys 544:119–127. doi:10.1016/j.abb.2013.10.002 Truelsen TA (1972) Indole-3-pyruvic acid as an intermediate in the conversion of tryptophan to indole-3-acetic acid. I. Some characteristics of tryptophan transaminase from mung bean seedlings. Physiol Plant 26:289–295 Tzin V, Galili G (2010) The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arab B 8:e0132. doi:10.1199/tab.0132 Urrestarazu A, Iraqui I, Vissers S, Cartiaux M (1998) Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:238–248. doi:10.1007/s004380050644 Vanneste S, Friml J (2009) Auxin: a for change in plant development. Cell 136:1005–1016. doi:10.1016/j.cell.2009.03.001 Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi:10.1093/mp/ssp106 Wallsgrove RM, Lea PJ, Miflin BJ (1983) Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol 71:780–784. doi:10.1104/PP.71.4.780 Wang M, Toda K, Maeda HA (2016) Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana. Phytochemistry 132:16–25 Weiss U (1986) Early research on the shikimate pathway: some personal remarks and reminiscences. In: Conn EE (ed) Shikimic acid pathway. Plenum Press, New York, pp 1–12 Westfall CS, Xu A, Jez JM (2014) Structural evolution of differential amino acid effector regulation in plant chorismate mutases. J Biol Chem 289:28619–28628. doi:10.1074/jbc.M114.591123 Widhalm JR, Gutensohn M, Yoo H et al (2015) Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat Commun 6:8142. doi:10.1038/ncomms9142 Winter D, Vinegar B, Nahal H et al (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:1–12. doi:10.1371/journal.pone.0000718 Wilkie SE, Warren MJ (1998) Recombinant expression, purification, and characterization of three isoenzymes of aspartate aminotransferase from Arabidopsis thaliana. Protein Expr Purif 12:381–389. doi:10.1006/prep.1997.0845 Wogulis M, Chew ER, Donohoue PD, Wilson DK (2008) Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry 47:1608–1621. doi:10.1021/bi701172v Won C, Shen X, Mashiguchi K et al (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases in Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523. doi:10.1073/pnas.1108436108 Yamada M, Greenham K, Prigge MJ et al (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179. doi:10.1104/pp.109.138859 Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170:853–858. doi:10.1016/j.plantsci.2005.12.004 Yang W, Cahoon RE, Hunter SC et al (2011) Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J 65:206–217. doi:10.1111/j.1365-313X.2010.04417.x Yoo H, Widhalm JR, Qian Y et al (2013) An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat Commun 4:2833. doi:10.1038/ncomms3833 Yoshikawa T, Ito M, Sumikura T et al (2014) The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J 78:927–936. doi:10.1111/tpj.12517 Zenk MH, Scherf H (1963) d-Tryptophan in hoeheren Pflanzen. Biochim Biophys Acta 71:737–738 Zenk MH, Scherf H (1964) Verbreitung der D-Tryptophan-Konjugationsmechanismen im Pflanzenreich. Planta 62:350–354 Zhang X, Liu CJ (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27. doi:10.1016/j.molp.2014.11.001 Zhang S, Pohnert G, Kongsaeree P et al (1998) Chorismate mutase-prephenate dehydratase from Escherichia coli K 12. J Biol Chem 273:6248–6253 Zhang Y, Butelli E, Alseekh S et al (2015) Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat Commun 6:8635. doi:10.1038/ncomms9635 Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-Acetic acid in plants. Mol Plant 5:334–338. doi:10.1093/mp/ssr104 Zhao Y (2014) Auxin Biosynthesis. Arab B 12: e0173. doi:10.1199/tab.0173 Zhao J, Last R (1996) Immunological characterization and chloroplast localization of the tryptophan biosnythetic enzmyes of the flowering plant Arabidopsis thaliana. J Biol Chem 270:6081–6087 Zheng Z, Guo Y, Novak O et al (2013) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9:244–246. doi:10.1038/nchembio.1178.Coordination Zuther K, Mayser P, Hettwer U et al (2008) The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol Microbiol 68:152–172. doi:10.1111/j.1365-2958.2008.06144.x