Arithmetic properties of the sequence of derangements
Tài liệu tham khảo
Amdeberhan, 2013, Valuations and combinatorics of truncated exponential sums, Integers, 13
Berndt, 2000, On the Brocard–Ramanujan Diophantine equation n!+1=m2, Ramanujan J., 4, 41, 10.1023/A:1009873805276
Bollman, 2010, Fibonacci numbers which are sums of three factorials, Publ. Math. Debrecen, 77, 211, 10.5486/PMD.2010.4700
Cassels, 1986
Dąbrowski, 1996, On the Diophantine equation x!+A=y2, Nieuw Arch. Wiskd., 14, 321
Dąbrowski, 2013, Variations on the Brocard–Ramanujan equation, J. Number Theory, 133, 1168, 10.1016/j.jnt.2012.09.005
Erdős, 1937, Über diophantische Gleichungen der form n!=xp±yp und n!±m!=xp, Acta Litt. Sci. Szeged, 8, 241
Gawron, 2013, A note on the Diophantine equation P(z)=m!+n!, Colloq. Math., 131, 10.4064/cm131-1-5
Grossman, 2002, Sums of factorials in binary recurrence sequences, J. Number Theory, 93, 87, 10.1006/jnth.2001.2718
Guy, 2004
Kurepa, 1973, On the left factorial function !n, Math. Balkanica (N.S.), 1, 147
Legendre, 1830
Luca, 1999, Products of factorials in binary recurrence sequences, Rocky Mountain J. Math., 29, 1387, 10.1216/rmjm/1181070412
Luca, 2002, The Diophantine equation P(n)=m! and a result of M. Overholt, Glas. Mat. Ser. III, 37, 269
Luca, 2010, Factorials expressible as sums of at most three Fibonacci numbers, Proc. Edinb. Math. Soc., 53, 679, 10.1017/S0013091508000874
Marques, 2014, The 2-adic order of the Tribonacci numbers and the equation Tn=m!, J. Integer Seq., 17
Miska, 2015, A note on p-adic valuations of Schenker sums, Colloq. Math., 140, 10.4064/cm140-1-2
Moll, 2012
Narkiewicz, 2003
Serre, 1973
Sun, 2011, On a curious property of Bell numbers, Bull. Aust. Math. Soc., 84, 153, 10.1017/S0004972711002218
Ulas, 2012, Some observations on the Diophantine equation y2=x!+A and related results, Bull. Aust. Math. Soc., 86, 377, 10.1017/S0004972712000512
Wolfram, 2003