Arithmetic discriminants and horizontal intersections

Mathematische Annalen - Tập 291 - Trang 705-724 - 1991
David Harbater1
1Department of Mathematics, University of Pennsylvania, Philadelphia, USA

Tài liệu tham khảo

[A] Arakelov, S.: Intersection theory of divisors of an arithmetic surface. Math. USSR Izv.8, 1167–1180 (1974) [C] Chinburg, T.: Minimal models for curves over Dedekind rings. In: Cornell, G., Silverman, J. (eds.) Arithmetic geometry, pp. 309–326. Berlin Heidelberg New York: Springer 1986 [CR] Chinburg, T., Rumely, R.: The capacity pairing, 1989 preprint [H1] Harbater, D.: Potential theory over local and global fields. I. J. Alg. (to appear) [H2] Harbater, D.: Potential theory over local and global fields. II. J. Alg. (to appear) [K1] Kani, E.: Weil heights, Néron pairings, andv-metrics on curves. Rocky Mt. J. Math.15, 417–449 (1985) [K2] Kani, E.: Potential theory on curves. In: de Koninek, J.-M., Levesque, C. (eds.) Number theory: Proceedings of International Number Theory Conf. at Univ. Level, 1987, pp. 475–543. Berlin New York: de Gruyter 1989 [L] Lang, L.: Fundamentals of diophantine geometry. Berlin Heidelberg New York: Springer 1983 [R] Rumely, R.: Capacity theory on algebraic curves. (Lect. Notes Math. vo. 1378). Berlin Heidelberg New York: Springer 1989