Ariel planetary interiors White Paper

Experimental Astronomy - Tập 53 - Trang 323-356 - 2021
Ravit Helled1, Stephanie Werner2, Caroline Dorn1, Tristan Guillot3, Masahiro Ikoma4, Yuichi Ito5, Mihkel Kama6, Tim Lichtenberg7, Yamila Miguel8,9, Oliver Shorttle10, Paul J. Tackley11, Diana Valencia12, Allona Vazan13
1Institute for Computational Science, University of Zurich, Zurich, Switzerland
2Department of Geosciences, University of Oslo, Oslo, Norway
3Observatoire de la Côte d’ Azur, CNRS, Nice Cedex 4, France
4Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
5Department of Physics and Astronomy, University College London, London, UK
6Tartu Observatory, University of Tartu, Tõravere, Estonia
7Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
8Leiden Observatory, University of Leiden, Leiden, The Netherlands
9SRON Netherlands Institute for Space Research, Utrecht, The Netherlands
10Institute of Astronomy, University of Cambridge, Cambridge, UK
11Institute of Geophysics, ETH, Zurich, Zurich, Switzerland
12University of Toronto, Toronto, Canada
13Astrophysical Research Center of the Open university (ARCO), Department of Natural Sciences, The Open University of Israel, Ra’anana, Israel

Tóm tắt

The recently adopted Ariel ESA mission will measure the atmospheric composition of a large number of exoplanets. This information will then be used to better constrain planetary bulk compositions. While the connection between the composition of a planetary atmosphere and the bulk interior is still being investigated, the combination of the atmospheric composition with the measured mass and radius of exoplanets will push the field of exoplanet characterisation to the next level, and provide new insights of the nature of planets in our galaxy. In this white paper, we outline the ongoing activities of the interior working group of the Ariel mission, and list the desirable theoretical developments as well as the challenges in linking planetary atmospheres, bulk composition and interior structure.

Tài liệu tham khảo

Adams, E R, Seager, S, Elkins-Tanton, L: Ocean planet or thick atmosphere: on the mass-radius relationship for solid exoplanets with massive atmospheres. ApJ 673(2), 1160–1164 (2008). https://doi.org/10.1086/524925. arXiv:0710.4941 Baraffe, I, Chabrier, G, Barman, TS, Allard, F, Hauschildt, PH: Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402, 701–712 (2003). https://doi.org/10.1051/0004-6361:20030252. arXiv:astro-ph/0302293 Baraffe, I, Chabrier, G, Barman, T: Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. A&A 482(1), 315–332 (2008). https://doi.org/10.1051/0004-6361:20079321. arXiv:0802.1810 Batygin, K, Stevenson, D J: Inflating hot Jupiters with ohmic dissipation. ApJl 714, L238–L243 (2010). https://doi.org/10.1088/2041-8205/714/2/L238. arXiv:1002.3650 Bodenheimer, P, Pollack, J B: Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67(3), 391–408 (1986). https://doi.org/10.1016/0019-1035(86)90122-3 Bodenheimer, P, Lin, D N C, Mardling, R A: On the tidal inflation of short-period extrasolar planets. ApJ 548, 466–472 (2001) Bodenheimer, P, Stevenson, D J, Lissauer, J J, D’Angelo, G: New formation models for the kepler-36 system. ApJ 868(2), 138 (2018). https://doi.org/10.3847/1538-4357/aae928. arXiv:1810.07160 Bonati, I, Lichtenberg, T, Bower, D J, Timpe, M L, Quanz, S P: Direct imaging of molten protoplanets in nearby young stellar associations. A&A 621, A125 (2019). https://doi.org/10.1051/0004-6361/201833158. arXiv:1811.07411 Boujibar, A, Driscoll, P, Fei, Y: Super-Earth internal structures and initial thermal states. J. Geophys. Res. (Planets) 125(5), e06124 (2020). https://doi.org/10.1029/2019JE006124 Bower, D J, Kitzmann, D, Wolf, A S, Sanan, P, Dorn, C, Oza, A V: Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations. Astron. Astrophys. 631, A103 (2019). https://doi.org/10.1051/0004-6361/201935710. arXiv:1904.08300 Brouwers, M G, Vazan, A, Ormel, C W: How cores grow by pebble accretion. I. Direct core growth. A&A 611, A65 (2018). https://doi.org/10.1051/0004-6361/201731824. arXiv:1708.05392 Burrows, A, Guillot, T, Hubbard, W B, Marley, M S, Saumon, D, Lunine, J I, Sudarsky, D: On the radii of close-in giant planets. ApJl 534(1), L97–L100 (2000). https://doi.org/10.1086/312638. arXiv:astro-ph/0003185 Burrows, A, Hubeny, I, Budaj, J, Hubbard, W B: Possible solutions to the radius anomalies of transiting giant planets. ApJ 661 (1), 502–514 (2007). https://doi.org/10.1086/514326. arXiv:astro-ph/0612703 Chabrier, G, Baraffe, I: Heat transport in giant (Exo)planets: a new perspective. ApJl 661 (1), L81–L84 (2007). https://doi.org/10.1086/518473. arXiv:astro-ph/0703755 Chabrier, G, Gallardo, J, Baraffe, I: Evolution of low-mass star and brown dwarf eclipsing binaries. A&A 472(2), L17–L20 (2007). https://doi.org/10.1051/0004-6361:20077702. arXiv:0707.1792 Chatterjee, S, Chen, H: Effects of planetesimal accretion on the thermal and structural evolution of sub-Neptunes. ApJ 852(1), 58 (2018). https://doi.org/10.3847/1538-4357/aa9e05. arXiv:1708.05366 Dalou, C, Füri, E, Deligny, C, Piani, L, Caumon, M C, Laumonier, M, Boulliung, J, Edén, M: Redox control on nitrogen isotope fractionation during planetary core formation. Proc. Natl. Acad. Sci. 116(29), 14485–14494 (2019). https://doi.org/10.1073/pnas.1820719116 Debras, F, Chabrier, G: New models of Jupiter in the context of Juno and Galileo. ApJ 872(1), 100 (2019a). https://doi.org/10.3847/1538-4357/aaff65. arXiv:1901.05697 Demory, B O, Seager, S: Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. ApJs 197(1), 12 (2011). https://doi.org/10.1088/0067-0049/197/1/12. arXiv:1110.6180 Demory, B O, Gillon, M, de Wit, J, Madhusudhan, N, Bolmont, E, Heng, K, Kataria, T, Lewis, N, Hu, R, Krick, J, Stamenković, V, Benneke, B, Kane, S, Queloz, D: A map of the large day-night temperature gradient of a super-Earth exoplanet. Nature 532(7598), 207–209 (2016). https://doi.org/10.1038/nature17169. arXiv:1604.05725 Deng, J, Du, Z, Karki, B B, Ghosh, D B, Lee, K K M: A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres. Nat. Commun. 11, 2007 (2020). https://doi.org/10.1038/s41467-020-15757-0 Dorn, C, Khan, A, Heng, K, Connolly, J A D, Alibert, Y, Benz, W, Tackley, P: Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? A&A 577, A83 (2015). https://doi.org/10.1051/0004-6361/201424915. arXiv:1502.03605 Dorn, C, Noack, L, Rozel, A: Outgassing on stagnant-lid super-earths. Astron. Astrophys. 614, A18 (2018) Dorn, C, Harrison, J H, Bonsor, A, Hands, T O: A new class of super-earths formed from high-temperature condensates: Hd219134 b, 55 cnc e, wasp-47 e. Mon. Not. R. Astron. Soc. 484(1), 712–727 (2019) Edwards, B, Mugnai, L, Tinetti, G, Pascale, E, Sarkar, S: An updated study of potential targets for Ariel. AJ 157(6), 242 (2019). https://doi.org/10.3847/1538-3881/ab1cb9. arXiv:1905.04959 Ehrenreich, D, Lovis, C, Allart, R, Zapatero Osorio, M R, Pepe, F, Cristiani, S, Rebolo, R, Santos, N C, Borsa, F, Demangeon, O, Dumusque, X, González Hernández, J I, Casasayas-Barris, N, Ségransan, D, Sousa, S, Abreu, M, Adibekyan, V, Affolter, M, Allende Prieto, C, Alibert, Y, Aliverti, M, Alves, D, Amate, M, Avila, G, Baldini, V, Bandy, T, Benz, W, Bianco, A, Bolmont, É, Bouchy, F, Bourrier, V, Broeg, C, Cabral, A, Calderone, G, Pallé, E, Cegla, H M, Cirami, R, Coelho, J M P, Conconi, P, Coretti, I, Cumani, C, Cupani, G, Dekker, H, Delabre, B, Deiries, S, D’Odorico, V, Di Marcantonio, P, Figueira, P, Fragoso, A, Genolet, L, Genoni, M, Génova Santos, R, Hara, N, Hughes, I, Iwert, O, Kerber, F, Knudstrup, J, Land oni, M, Lavie, B, Lizon, J L, Lendl, M, Lo Curto, G, Maire, C, Manescau, A, Martins, C J A P, Mégevand, D, Mehner, A, Micela, G, Modigliani, A, Molaro, P, Monteiro, M, Monteiro, M, Moschetti, M, Müller, E, Nunes, N, Oggioni, L, Oliveira, A, Pariani, G, Pasquini, L, Poretti, E, Rasilla, J L, Redaelli, E, Riva, M, Santana Tschudi, S, Santin, P, Santos, P, Segovia Milla, A, Seidel, J V, Sosnowska, D, Sozzetti, A, Spanò, P, Suárez Mascareño, A, Tabernero, H, Tenegi, F, Udry, S, Zanutta, A, Zerbi, F: Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580(7805), 597–601 (2020). https://doi.org/10.1038/s41586-020-2107-1. arXiv:2003.05528 Eistrup, C, Walsh, C, van Dishoeck, E F: Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? A&A 595, A83 (2016). https://doi.org/10.1051/0004-6361/201628509. arXiv:1607.06710 Elkins-Tanton, LT: Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40 (1), 113–139 (2012). https://doi.org/10.1146/annurev-earth-042711-105503 Elkins-Tanton, LT, Seager, S: Coreless terrestrial exoplanets. ApJ 688 (1), 628–635 (2008). https://doi.org/10.1086/592316. arXiv:0808.1908 Elser, S, Meyer, M R, Moore, B: On the origin of elemental abundances in the terrestrial planets. Icarus 221(2), 859–874 (2012) Fischer, R A, Cottrell, E, Hauri, E, Lee, K K M, Le Voyer, M: The carbon content of earth and its core. Proc. Natl. Acad. Sci. 117(16), 8743–8749 (2020). https://doi.org/10.1073/pnas.1919930117. https://www.pnas.org/content/117/16/8743, https://www.pnas.org/content/117/16/8743.full.pdf Fletcher, L N, Helled, R, Roussos, E, Jones, G, Charnoz, S, André, N, Andrews, D, Bannister, M, Bunce, E, Cavalié, T, Ferri, F, Fortney, J, Grassi, D, Griton, L, Hartogh, P, Hueso, R, Kaspi, Y, Lamy, L, Masters, A, Melin, H, Moses, J, Mousis, O, Nettleman, N, Plainaki, C, Schmidt, J, Simon, A, Tobie, G, Tortora, P, Tosi, F, Turrini, D: Ice giant systems: the scientific potential of orbital missions to Uranus and Neptune. Planet. Space Sci. 191, 105030 (2020). https://doi.org/10.1016/j.pss.2020.105030. arXiv:1907.02963 Foley, B J, Driscoll, P E: Whole planet coupling between climate, mantle, and core: implications for rocky planet evolution. Geochem., Geophys. Geosyst. 17 (5), 1885–1914 (2016). https://doi.org/10.1002/2015GC006210. arXiv:1711.06801 Fortney, J J, Hubbard, W B: Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164, 228–243 (2003) Fortney, J J, Ikoma, M, Nettelmann, N, Guillot, T, Marley, M S: Self-consistent model atmospheres and the cooling of the solar system’s giant planets. ApJ 729(1), 32 (2011). https://doi.org/10.1088/0004-637X/729/1/32. arXiv:1101.0606 Frost, D J, McCammon, C A: The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008). https://doi.org/10.1146/annurev.earth.36.031207.124322 Fulton, B J, Petigura, E A, Howard, A W, Isaacson, H, Marcy, G W, Cargile, P A, Hebb, L, Weiss, L M, Johnson, J A, Morton, T D, Sinukoff, E, Crossfield, I J M, Hirsch, L A: The california-kepler survey. iii. A gap in the radius distribution of small planets. AJ 154, 109 (2017). arXiv:1703.10375 Gaidos, E, Conrad, C P, Manga, M, Hernlund, J: Thermodynamic limits on magnetodynamos in rocky exoplanets. ApJ 718(2), 596–609 (2010). https://doi.org/10.1088/0004-637X/718/2/596. arXiv:1005.3523 Ginzburg, S, Sari, R: Hot-Jupiter inflation due to deep energy deposition. ApJ 803(2), 111 (2015). https://doi.org/10.1088/0004-637X/803/2/111. arXiv:1501.02087 Ginzburg, S, Sari, R: Extended heat deposition in hot Jupiters: application to ohmic heating. ApJ 819(2), 116 (2016). https://doi.org/10.3847/0004-637X/819/2/116. arXiv:1511.00135 Guillot, T: Interior of giant planets inside and outside the solar system. Science 286, 72–77 (1999). https://doi.org/10.1126/science.286.5437.72 Guillot, T: The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005). arXiv:astro-ph/0502068 Guillot, T, Showman, A P: Evolution of “51 pegasus b-like” planets. A&A 385, 156–165 (2002). arXiv:astro-ph/0202234 Guillot, T, Burrows, A, Hubbard, W B, Lunine, J I, Saumon, D: Giant planets at small orbital distances. ApJl 459, L35–L39 (1996). arXiv:astro-ph/9511109 Guillot, T, Santos, NC, Pont, F, Iro, N, Melo, C, Ribas, I: A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A 453(2), L21–L24 (2006). https://doi.org/10.1051/0004-6361:20065476. arXiv:astro-ph/0605751 Guillot, T, Fortney, J, Rauscher, E, Marley, M S, Parmentier, V, Line, M, Wakeford, H, Kaspi, Y, Helled, R, Ikoma, M, Knutson, H, Menou, K, Valencia, D, Durante, D, Ida, S, Bolton, S J, Li, C, Stevenson, K B, Bean, J, Cowan, N B, Hofstadter, M D, Hueso, R, Leconte, J, Li, L, Mordasini, C, Mousis, O, Nettelmann, N, Soderlund, K, Wong, M H: Keys of a mission to Uranus or Neptune, the closest ice giants. arXiv:2012.09863 (2020) Helled, R: The interiors of Jupiter and Saturn, p 175. https://doi.org/10.1093/acrefore/9780190647926.013.175 (2019) Helled, R, Bodenheimer, P: The formation of Uranus and Neptune: challenges and implications for intermediate-mass exoplanets. ApJ 789(1), 69 (2014). https://doi.org/10.1088/0004-637X/789/1/69. arXiv:1404.5018 Helled, R, Fortney, J J: The interiors of Uranus and Neptune: current understanding and open questions. Phil Trans R Soc A 378, 20190474 (2020). https://doi.org/10.1098/rsta.2019.0474 Helled, R, Lunine, J: Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. MNRAS 441(3), 2273–2279 (2014). https://doi.org/10.1093/mnras/stu516. arXiv:1403.2891 Helled, R, Stevenson, D: The fuzziness of giant planets’ cores. ApJl 840(1), L4 (2017). https://doi.org/10.3847/2041-8213/aa6d08. arXiv:1704.01299 Helled, R, Bodenheimer, P, Podolak, M, Boley, A, Meru, F, Nayakshin, S, Fortney, JJ, Mayer, L, Alibert, Y, Boss, AP: Giant planet formation, evolution, and internal structure. In: Beuther, H, Klessen, RS, Dullemond, CP, Henning, T (eds.) Protostars and Planets VI, p 643 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch028. arXiv:1311.1142 Helled, R, Nettelmann, N, Guillot, T: Uranus and Neptune: origin, evolution and internal structure. Space Sci. Rev. 216(3), 38 (2020). https://doi.org/10.1007/s11214-020-00660-3. arXiv:1909.04891 Hevey, P J, Sanders, I S: A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41(1), 95–106 (2006). https://doi.org/10.1111/j.1945-5100.2006.tb00195.x Hirose, K, Tagawa, S, Kuwayama, Y, Sinmyo, R, Morard, G, Ohishi, Y, Genda, H: Hydrogen limits carbon in liquid iron. Geophys. Res. Lett. 46(10), 5190–5197 (2019). https://doi.org/10.1029/2019GL082591 Hirschmann, M M: Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341, 48–57 (2012). https://doi.org/10.1016/j.epsl.2012.06.015 Hirschmann, M M: Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101(3), 540–553 (2016). https://doi.org/10.2138/am-2016-5452 Howe, A R, Burrows, A, Verne, W: Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes. ApJ 787(2), 173 (2014). https://doi.org/10.1088/0004-637X/787/2/173. arXiv:1402.4818 Huang, X, Cumming, A: Ohmic dissipation in the interiors of hot Jupiters. ApJ 757(1), 47 (2012). https://doi.org/10.1088/0004-637X/757/1/47. arXiv:1207.3278 Hubbard, W B: The Jovian surface condition and cooling rate. Icarus 30, 305–310 (1977) Iaroslavitz, E, Podolak, M: Atmospheric mass deposition by captured planetesimals. Icarus 187, 600–610 (2007). https://doi.org/10.1016/j.icarus.2006.10.008 Ikoma, M, Guillot, T, Genda, H, Tanigawa, T, Ida, S: On the Origin of HD 149026b. ApJ 650(2), 1150–1159 (2006). https://doi.org/10.1086/507088. arXiv:astro-ph/0607212 Ikoma, M, Elkins-Tanton, L, Hamano, K, Suckale, J: Water partitioning in planetary embryos and protoplanets with magma oceans. Space Sci Rev 214(4), 76 (2018). https://doi.org/10.1007/s11214-018-0508-3. arXiv:1804.09294 Ito, Y, Ikoma, M, Kawahara, H, Nagahara, H, Kawashima, Y, Nakamoto, T: Theoretical emission spectra of atmospheres of hot rocky super-Earths. ApJ 801(2), 144 (2015). https://doi.org/10.1088/0004-637X/801/2/144. arXiv:1501.05393 Jin, S, Mordasini, C: Compositional imprints in density-distance-time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. ApJ 853(2), 163 (2018). https://doi.org/10.3847/1538-4357/aa9f1e. arXiv:1706.00251 Jontof-Hutter, D: The compositional diversity of low-mass exoplanets. Annu. Rev. Earth Planet. Sci. 47, 141–171 (2019). https://doi.org/10.1146/annurev-earth-053018-060352. arXiv:1911.04598 Kaltenegger, L: How to characterize habitable worlds and signs of life. ARA&A 55(1), 433–485 (2017). https://doi.org/10.1146/annurev-astro-082214-122238. arXiv:1911.05597 Kite, E S, Bruce, Fegley J, Schaefer, L, Ford, E B: Superabundance of exoplanet sub-Neptunes explained by fugacity crisis. ApJl 887(2), L33 (2019). https://doi.org/10.3847/2041-8213/ab59d9. arXiv:1912.02701 Komacek, T D, Youdin, A N: Structure and evolution of internally heated hot Jupiters. ApJ 844(2), 94 (2017). https://doi.org/10.3847/1538-4357/aa7b75. arXiv:1706.07605 Komacek, T D, Thorngren, D P, Lopez, E D, Ginzburg, S: Reinflation of warm and hot Jupiters. ApJ 893(1), 36 (2020). https://doi.org/10.3847/1538-4357/ab7eb4. arXiv:2003.04877 Kreidberg, L, Koll, D D B, Morley, C, Hu, R, Schaefer, L, Deming, D, Stevenson, K B, Dittmann, J, Vanderburg, A, Berardo, D, Guo, X, Stassun, K, Crossfield, I, Charbonneau, D, Latham, D W, Loeb, A, Ricker, G, Seager, S, Vand erspek, R: Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573 (7772), 87–90 (2019). https://doi.org/10.1038/s41586-019-1497-4. arXiv:1908.06834 Kuchner, M J: Volatile-rich Earth-mass planets in the habitable zone. ApJl 596(1), L105–L108 (2003). https://doi.org/10.1086/378397. arXiv:astro-ph/0303186 Kunitomo, M, Guillot, T, Ida, S, Takeuchi, T: Revisiting the pre-main-sequence evolution of stars. II. Consequences of planet formation on stellar surface composition. A&A 618, A132 (2018). https://doi.org/10.1051/0004-6361/201833127. arXiv:1808.07396 Kurosaki, K, Ikoma, M, Hori, Y: Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. A&A 562, A80 (2014). https://doi.org/10.1051/0004-6361/201322258. arXiv:1307.3034 Lambrechts, M, Morbidelli, A, Jacobson, S A, Johansen, A, Bitsch, B, Izidoro, A, Raymond, S N: Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. A&A 627, A83 (2019). https://doi.org/10.1051/0004-6361/201834229. arXiv:1902.08694 Laughlin, G, Lissauer, J J: Exoplanetary geophysics—an emerging discipline. arXiv:1501.05685 (2015) Laughlin, G, Crismani, M, Adams, F C: On the anomalous radii of the transiting extrasolar planets. ApJl 729(1), L7 (2011). https://doi.org/10.1088/2041-8205/729/1/L7. arXiv:1101.5827 Leconte, J: Continuous reorientation of synchronous terrestrial planets due to mantle convection. Nat. Geosci. 11(3), 168–172 (2018). https://doi.org/10.1038/s41561-018-0071-2. arXiv:1809.01150 Leconte, J, Chabrier, G: A new vision of giant planet interiors: impact of double diffusive convection. A&A 540, A20 (2012). https://doi.org/10.1051/0004-6361/201117595. arXiv:1201.4483 Ledoux, P: Stellar models with convection and with discontinuity of the mean molecular weight. ApJ 105, 305 (1947). https://doi.org/10.1086/144905 Léger, A, Selsis, F, Sotin, C, Guillot, T, Despois, D, Mawet, D, Ollivier, M, Labèque, A, Valette, C, Brachet, F, Chazelas, B, Lammer, H: A new family of planets? “ocean-planets”. Icarus 169(2), 499–504 (2004). https://doi.org/10.1016/j.icarus.2004.01.001. arXiv:astro-ph/0308324 Lichtenberg, T, Golabek, G J, Gerya, T V, Meyer, M R: The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016). https://doi.org/10.1016/j.icarus.2016.03.004. arXiv:1603.05979 Lichtenberg, T, Parker, R J, Meyer, M R: Isotopic enrichment of forming planetary systems from supernova pollution. Mon Not R Astron Soc 462(4), 3979–3992 (2016). https://doi.org/10.1093/mnras/stw1929. arXiv:1608.01435 Lichtenberg, T, Golabek, G J, Burn, R, Meyer, M R, Alibert, Y, Gerya, T V, Mordasini, C: A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307–313 (2019). https://doi.org/10.1038/s41550-018-0688-5. arXiv:1902.04026 Lin, D N C, Bodenheimer, P, Richardson, D C: Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380 (6575), 606–607 (1996). https://doi.org/10.1038/380606a0 Lopez, E D: Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. MNRAS 472(1), 245–253 (2017). https://doi.org/10.1093/mnras/stx1558. arXiv:1610.01170 Lourenço, D L, Rozel, A, Tackley, P J: Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett. 439, 18–28 (2016). https://doi.org/10.1016/j.epsl.2016.01.024 Lourenço, D L, Rozel, A B, Gerya, T, Tackley, P J: Efficient cooling of rocky planets by intrusive magmatism. Nat. Geosci. 11(5), 322–327 (2018). https://doi.org/10.1038/s41561-018-0094-8 Lozovsky, M, Helled, R, Rosenberg, E D, Bodenheimer, P: Jupiter’s formation and its primordial internal structure. ApJ 836, 227 (2017). https://doi.org/10.3847/1538-4357/836/2/227. arXiv:1701.01719 Lozovsky, M, Helled, R, Dorn, C, Venturini, J: Threshold radii of volatile-rich planets. Astrophys. J. 866(1), 49 (2018) Madhusudhan, N: Exoplanetary atmospheres: key insights, challenges, and prospects. ARA&A 57, 617–663 (2019). https://doi.org/10.1146/annurev-astro-081817-051846. arXiv:1904.03190 Madhusudhan, N, Lee, KKM, Mousis, O: A possible carbon-rich interior in super-Earth 55 Cancri e. ApJl 759(2), L40 (2012). https://doi.org/10.1088/2041-8205/759/2/L40. arXiv:1210.2720 Madhusudhan, N, Bitsch, B, Johansen, A, Eriksson, L: Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS 469(4), 4102–4115 (2017). https://doi.org/10.1093/mnras/stx1139. arXiv:1611.03083 Meier, T, Bower, DJ, Lichtenberg, T, Tackley, PJ: Interior dynamics of tidally locked super-Earths: the case of LHS 3844b. In: Europlanet Science Congress 2020, vol. 2020, pp EPSC2020–778 (2020) Miguel, Y: Observability of molecular species in a nitrogen dominated atmosphere for 55 Cancri e. MNRAS 482(3), 2893–2901 (2019). https://doi.org/10.1093/mnras/sty2803. arXiv:1809.08230 Miguel, Y, Kaltenegger, L, Fegley, B, Schaefer, L: Compositions of hot super-Earth atmospheres: exploring Kepler candidates. ApJl 742(2), L19 (2011). https://doi.org/10.1088/2041-8205/742/2/L19. arXiv:1110.2426 Miller, N, Fortney, J J: The Heavy-element masses of extrasolar giant planets, revealed. ApJl 736(2), L29 (2011). https://doi.org/10.1088/2041-8205/736/2/L29. arXiv:1105.0024 Miozzi, F, Morard, G, Antonangeli, D, Clark, A N, Mezouar, M, Dorn, C, Rozel, A, Fiquet, G: Equation of state of SiC at extreme conditions: new insight into the interior of carbon-rich exoplanets. J. Geophys. Res. (Planets) 123(9), 2295–2309 (2018). https://doi.org/10.1029/2018JE005582. arXiv:1808.08201 Miyagoshi, T, Kameyama, M, Ogawa, M: Effects of adiabatic compression on thermal convection in super-Earths of various sizes. Earth Planets Space 70(1), 200 (2018). https://doi.org/10.1186/s40623-018-0975-5 Mizuno, H: Formation of the giant planets. Prog. Theor. Phys. 64(2), 544–557 (1980). https://doi.org/10.1143/PTP.64.544 Mol Lous, M, Miguel, Y: Inflation of migrated hot Jupiters. MNRAS 495(3), 2994–3001 (2020). https://doi.org/10.1093/mnras/staa1405. arXiv:2005.04927 Morales, M A, Schwegler, E, Ceperley, D, Pierleoni, C, Hamel, S, Caspersen, K: Phase separation in hydrogen-helium mixtures at Mbar pressures. Proc. Natl. Acad. Sci. 106, 1324 (2009). https://doi.org/10.1073/pnas.0812581106. arXiv:0903.0980 Müller, S, Ben-Yami, M, Helled, R: Theoretical versus observational uncertainties: composition of giant exoplanets. ApJ 903(2), 147 (2020). https://doi.org/10.3847/1538-4357/abba19. arXiv:2009.09746 Müller, S, Helled, R, Cumming, A: The challenge of forming a fuzzy core in Jupiter. arXiv:2004.13534 (2020) Ni, D: Understanding Jupiter’s deep interior: the effect of a dilute core. A&A 632, A76 (2019). https://doi.org/10.1051/0004-6361/201935938 Öberg, K I, Bergin, E A: Excess c/o and c/h in outer protoplanetary disk gas. Astrophys. J. Lett. 831(2), L19 (2016) Öberg, K I, Wordsworth, R: Jupiter’s composition suggests its core assembled exterior to the N2 snowline. AJ 158(5), 194 (2019). https://doi.org/10.3847/1538-3881/ab46a8. arXiv:1909.11246 Öberg, K I, Murray-Clay, R, Bergin, E A: The effects of snowlines on C/O in planetary atmospheres. ApJl 743 (1), L16 (2011). https://doi.org/10.1088/2041-8205/743/1/L16. arXiv:1110.5567 Olson, P L, Sharp, Z D: Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019). https://doi.org/10.1016/j.pepi.2019.106294 O’Neill, C, Lenardic, A, Weller, M, Moresi, L, Quenette, S, Zhang, S: A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016). https://doi.org/10.1016/j.pepi.2016.04.002 Otegi, J F, Bouchy, F, Helled, R: Revisited mass-radius relations for exoplanets below 120 M⊕. A&A 634, A43 (2020). https://doi.org/10.1051/0004-6361/201936482. arXiv:1911.04745 Owen, J E, Wu, Y: The evaporation valley in the Kepler planets. ApJ 847(1), 29 (2017). https://doi.org/10.3847/1538-4357/aa890a. arXiv:1705.10810 Parmentier, V, Fortney, J J, Showman, A P, Morley, C, Marley, M S: Transitions in the cloud composition of hot Jupiters. ApJ 828 (1), 22 (2016). https://doi.org/10.3847/0004-637X/828/1/22. arXiv:1602.03088 Perna, R, Menou, K, Rauscher, E: Ohmic dissipation in the atmospheres of hot Jupiters. ApJ 724(1), 313–317 (2010). https://doi.org/10.1088/0004-637X/724/1/313. arXiv:1009.3273 Pinhas, A, Madhusudhan, N, Gandhi, S, MacDonald, R: H2O abundances and cloud properties in ten hot giant exoplanets. MNRAS 482 (2), 1485–1498 (2019). https://doi.org/10.1093/mnras/sty2544. arXiv:1811.00011 Plotnykov, M, Valencia, D: Chemical fingerprints of formation in rocky super-earths’ data. Mon. Not. R. Astron. Soc. 499(1), 932–947 (2020) Rauer, H, Catala, C, Aerts, C, Appourchaux, T, Benz, W, Brandeker, A, Christensen-Dalsgaard, J, Deleuil, M, Gizon, L, Goupil, M J, Güdel, M, Janot-Pacheco, E, Mas-Hesse, M, Pagano, I, Piotto, G, Pollacco, D, Santos, C, Smith, A, Suárez, J C, Szabó, R, Udry, S, Adibekyan, V, Alibert, Y, Almenara, J M, Amaro-Seoane, P, Eiff, MAV, Asplund, M, Antonello, E, Barnes, S, Baudin, F, Belkacem, K, Bergemann, M, Bihain, G, Birch, A C, Bonfils, X, Boisse, I, Bonomo, A S, Borsa, F, Brandão, I M, Brocato, E, Brun, S, Burleigh, M, Burston, R, Cabrera, J, Cassisi, S, Chaplin, W, Charpinet, S, Chiappini, C, Church, R P, Csizmadia, S, Cunha, M, Damasso, M, Davies, M B, Deeg, H J, Díaz, RF, Dreizler, S, Dreyer, C, Eggenberger, P, Ehrenreich, D, Eigmüller, P, Erikson, A, Farmer, R, Feltzing, S, de Oliveira Fialho, F, Figueira, P, Forveille, T, Fridlund, M, García, RA, Giommi, P, Giuffrida, G, Godolt, M, Gomes da Silva, J, Granzer, T, Grenfell, JL, Grotsch-Noels, A, Günther, E, Haswell, CA, Hatzes, AP, Hébrard, G, Hekker, S, Helled, R, Heng, K, Jenkins, JM, Johansen, A, Khodachenko, ML, Kislyakova, KG, Kley, W, Kolb, U, Krivova, N, Kupka, F, Lammer, H, Lanza, AF, Lebreton, Y, Magrin, D, Marcos-Arenal, P, Marrese, PM, Marques, JP, Martins, J, Mathis, S, Mathur, S, Messina, S, Miglio, A, Montalban, J, Montalto, M, Monteiro, MJPFG, Moradi, H, Moravveji, E, Mordasini, C, Morel, T, Mortier, A, Nascimbeni, V, Nelson, RP, Nielsen, MB, Noack, L, Norton, AJ, Ofir, A, Oshagh, M, Ouazzani, RM, Pápics, P, Parro, VC, Petit, P, Plez, B, Poretti, E, Quirrenbach, A, Ragazzoni, R, Raimondo, G, Rainer, M, Reese, DR, Redmer, R, Reffert, S, Rojas-Ayala, B, Roxburgh, IW, Salmon, S, Santerne, A, Schneider, J, Schou, J, Schuh, S, Schunker, H, Silva-Valio, A, Silvotti, R, Skillen, I, Snellen, I, Sohl, F, Sousa, SG, Sozzetti, A, Stello, D, Strassmeier, KG, Švanda, M, Szabó, GM, Tkachenko, A, Valencia, D, Van Grootel, V, Vauclair, SD, Ventura, P, Wagner, FW, Walton, NA, Weingrill, J, Werner, SC, Wheatley, PJ, Zwintz, K: The PLATO 2.0 mission. Exp. Astron. 38(1–2), 249–330 (2014). https://doi.org/10.1007/s10686-014-9383-4. arXiv:1310.0696 Rauscher, E, Menou, K: Three-DIMENSIONAL ATMOSPHERIC CIRCULATION Models of HD 189733b and HD 209458b with consistent magnetic drag and ohmic dissipation. ApJ 764(1), 103 (2013). https://doi.org/10.1088/0004-637X/764/1/103. arXiv:1208.2274 Rauscher, E, Showman, A P: The influence of differential irradiation and circulation on the thermal evolution of gas giant planets. I. Upper limits from radiative equilibrium. ApJ 784(2), 160 (2014). https://doi.org/10.1088/0004-637X/784/2/160. arXiv:1309.7052 Rimmer, P B, Rugheimer, S: Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 329, 124–131 (2019) Rogers, T M, Showman, A P: Magnetohydrodynamic simulations of the atmosphere of HD 209458b. ApJl 782(1), L4 (2014). https://doi.org/10.1088/2041-8205/782/1/L4. arXiv:1401.5815 Rubie, D C, Jacobson, S A, Morbidelli, A, O’Brien, D P, Young, E D, de Vries, J, Nimmo, F, Palme, H, Frost, D J: Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015). https://doi.org/10.1016/j.icarus.2014.10.015. arXiv:1410.3509 Sainsbury-Martinez, F, Wang, P, Fromang, S, Tremblin, P, Dubos, T, Meurdesoif, Y, Spiga, A, Leconte, J, Baraffe, I, Chabrier, G, Mayne, N, Drummond, B, Debras, F: Idealised simulations of the deep atmosphere of hot Jupiters. Deep, hot adiabats as a robust solution to the radius inflation problem. A&A 632, A114 (2019). https://doi.org/10.1051/0004-6361/201936445. arXiv:1911.06546 Salvador, A, Massol, H, Davaille, A, Marcq, E, Sarda, P, Chassefière, E: The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res. (Planets) 122(7), 1458–1486 (2017). https://doi.org/10.1002/2017JE005286 Sato, B, Fischer, DA, Henry, GW, Laughlin, G, Butler, RP, Marcy, GW, Vogt, SS, Bodenheimer, P, Ida, S, Toyota, E, Wolf, A, Valenti, JA, Boyd, LJ, Johnson, JA, Wright, JT, Ammons, M, Robinson, S, Strader, J, McCarthy, C, Tah, KL, Minniti, D: The N2K Consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. ApJ 633(1), 465–473 (2005). https://doi.org/10.1086/449306. arXiv:astro-ph/0507009 Schaefer, L, Bruce, FJ: Redox states of initial atmospheres outgassed on rocky planets and planetesimals. ApJ 843 (2), 120 (2017). https://doi.org/10.3847/1538-4357/aa784f Schaefer, L, Elkins-Tanton, L T: Magma oceans as a critical stage in the tectonic development of rocky planets. Philos. Trans. R. Soc. Lond. Ser. A 376(2132), 20180109 (2018). https://doi.org/10.1098/rsta.2018.0109. arXiv:1809.01629 Schaefer, L, Fegley, B: Chemistry of silicate atmospheres of evaporating super-Earths. ApJl 703(2), L113–L117 (2009). https://doi.org/10.1088/0004-637X/703/2/L113. arXiv:0906.1204 Schaefer, L, Lodders, K, Fegley, B: Vaporization of the Earth: application to exoplanet atmospheres. ApJ 755(1), 41 (2012). https://doi.org/10.1088/0004-637X/755/1/41. arXiv:1108.4660 Schaefer, L, Wordsworth, R D, Berta-Thompson, Z, Sasselov, D: Predictions of the Atmospheric Composition of GJ. ApJ 829(2), 63 (1132b). https://doi.org/10.3847/0004-637X/829/2/63. arXiv:1607.03906 Schulze, J, Wang, J, Johnson, J, Unterborn, C, Panero, W: The probability that a rocky planet’s composition reflects its host star. arXiv:1201108893 (2020) Shibata, S, Ikoma, M: Capture of solids by growing proto-gas giants: effects of gap formation and supply limited growth. MNRAS 487(4), 4510–4524 (2019). https://doi.org/10.1093/mnras/stz1629. arXiv:1906.05530 Shibata, S, Helled, R, Ikoma, M: The origin of the high metallicity of close-in giant exoplanets. Combined effects of resonant and aerodynamic shepherding. A&A 633, A33 (2020). https://doi.org/10.1051/0004-6361/201936700. arXiv:1911.02292 Showman, AP, Guillot, T: Atmospheric circulation and tides of “51 Pegasus b-like” planets. A&A 385, 166–180 (2002). https://doi.org/10.1051/0004-6361:20020101 Soubiran, F, Militzer, B, Driver, K P, Zhang, S: Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors. Phys. Plasmas 24(4), 041401 (2017). https://doi.org/10.1063/1.4978618. arXiv:1703.09840 Spaargaren, R J, Ballmer, M D, Bower, D J, Dorn, C, Tackley, P J: The influence of bulk composition on the long-term interior-atmosphere evolution of terrestrial exoplanets. Astron. Astrophys. 643, A44 (2020) Spiegel, D S, Fortney, J J, Sotin, C: Structure of exoplanets. Proc. Natl. Acad. Sci. 111(35), 12622–12627 (2014). https://doi.org/10.1073/pnas.1304206111. arXiv:1312.3323 Stevenson, D J, Salpeter, E E: The dynamics and helium distribution in hydrogen-helium fluid planets. ApJs 35, 239–261 (1977). https://doi.org/10.1086/190479 Tackley, P J, Ammann, M, Brodholt, J P, Dobson, D P, Valencia, D: Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225(1), 50–61 (2013). https://doi.org/10.1016/j.icarus.2013.03.013. arXiv:1204.3539 Tanaka, H, Takeuchi, T, Ward, W R: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad Torques and planet migration. ApJ 565(2), 1257–1274 (2002). https://doi.org/10.1086/324713 Thorngren, D P, Fortney, J J: Bayesian analysis of hot-Jupiter radius anomalies: evidence for ohmic dissipation? AJ 155(5), 214 (2018). https://doi.org/10.3847/1538-3881/aaba13. arXiv:1709.04539 Thorngren, D P, Fortney, J J, Murray-Clay, R A, Lopez, E D: The mass-metallicity relation for giant planets. ApJ 831(1), 64 (2016). https://doi.org/10.3847/0004-637X/831/1/64. arXiv:1511.07854 Tinetti, G, Drossart, P, Eccleston, P, Hartogh, P, Heske, A, Leconte, J, Micela, G, Ollivier, M, Pilbratt, G, Puig, L, Turrini, D, Vandenbussche, B, Wolkenberg, P, Beaulieu, J P, Buchave, L A, Ferus, M, Griffin, M, Guedel, M, Justtanont, K, Lagage, P O, Machado, P, Malaguti, G, Min, M, Nørgaard-Nielsen, HU, Rataj, M, Ray, T, Ribas, I, Swain, M, Szabo, R, Werner, S, Barstow, J, Burleigh, M, Cho, J, du Foresto, V C, Coustenis, A, Decin, L, Encrenaz, T, Galand, M, Gillon, M, Helled, R, Morales, J C, Muñoz, A G, Moneti, A, Pagano, I, Pascale, E, Piccioni, G, Pinfield, D, Sarkar, S, Selsis, F, Tennyson, J, Triaud, A, Venot, O, Waldmann, I, Waltham, D, Wright, G, Amiaux, J, Auguères, J L, Berthé, M, Bezawada, N, Bishop, G, Bowles, N, Coffey, D, Colomé, J, Crook, M, Crouzet, P E, Da Peppo, V, Sanz, I E, Focardi, M, Frericks, M, Hunt, T, Kohley, R, Middleton, K, Morgante, G, Ottensamer, R, Pace, E, Pearson, C, Stamper, R, Symonds, K, Rengel, M, Renotte, E, Ade, P, Affer, L, Alard, C, Allard, N, Altieri, F, André, Y, Arena, C, Argyriou, I, Aylward, A, Baccani, C, Bakos, G, Banaszkiewicz, M, Barlow, M, Batista, V, Bellucci, G, Benatti, S, Bernardi, P, Bézard, B, Blecka, M, Bolmont, E, Bonfond, B, Bonito, R, Bonomo, A S, Brucato, J R, Brun, A S, Bryson, I, Bujwan, W, Casewell, S, Charnay, B, Pestellini, C C, Chen, G, Ciaravella, A, Claudi, R, Clédassou, R, Damasso, M, Damiano, M, Danielski, C, Deroo, P, Di Giorgio, A M, Dominik, C, Doublier, V, Doyle, S, Doyon, R, Drummond, B, Duong, B, Eales, S, Edwards, B, Farina, M, Flaccomio, E, Fletcher, L, Forget, F, Fossey, S, Fränz, M, Fujii, Y, García-Piquer, Á, Gear, W, Geoffray, H, Gérard, JC, Gesa, L, Gomez, H, Graczyk, R, Griffith, C, Grodent, D, Guarcello, MG, Gustin, J, Hamano, K, Hargrave, P, Hello, Y, Heng, K, Herrero, E, Hornstrup, A, Hubert, B, Ida, S, Ikoma, M, Iro, N, Irwin, P, Jarchow, C, Jaubert, J, Jones, H, Julien, Q, Kameda, S, Kerschbaum, F, Kervella, P, Koskinen, T, Krijger, M, Krupp, N, Lafarga, M, Landini, F, Lellouch, E, Leto, G, Luntzer, A, Rank-Lüftinger, T, Maggio, A, Maldonado, J, Maillard, JP, Mall, U, Marquette, JB, Mathis, S, Maxted, P, Matsuo, T, Medvedev, A, Miguel, Y, Minier, V, Morello, G, Mura, A, Narita, N, Nascimbeni, V, Nguyen Tong, N, Noce, V, Oliva, F, Palle, E, Palmer, P, Pancrazzi, M, Papageorgiou, A, Parmentier, V, Perger, M, Petralia, A, Pezzuto, S, Pierrehumbert, R, Pillitteri, I, Piotto, G, Pisano, G, Prisinzano, L, Radioti, A, Réess, JM, Rezac, L, Rocchetto, M, Rosich, A, Sanna, N, Santerne, A, Savini, G, Scandariato, G, Sicardy, B, Sierra, C, Sindoni, G, Skup, K, Snellen, I, Sobiecki, M, Soret, L, Sozzetti, A, Stiepen, A, Strugarek, A, Taylor, J, Taylor, W, Terenzi, L, Tessenyi, M, Tsiaras, A, Tucker, C, Valencia, D, Vasisht, G, Vazan, A, Vilardell, F, Vinatier, S, Viti, S, Waters, R, Wawer, P, Wawrzaszek, A, Whitworth, A, Yung, YL, Yurchenko, SN, Osorio, MRZ, Zellem, R, Zingales, T, Zwart, F: A chemical survey of exoplanets with ARIEL. Exp. Astron. 46(1), 135–209 (2018). https://doi.org/10.1007/s10686-018-9598-x Tremblin, P, Chabrier, G, Mayne, N J, Amundsen, D S, Baraffe, I, Debras, F, Drummond, B, Manners, J, Fromang, S: Advection of potential temperature in the atmosphere of irradiated exoplanets: a robust mechanism to explain radius inflation. ApJ 841(1), 30 (2017). https://doi.org/10.3847/1538-4357/aa6e57. arXiv:1704.05440 Trønnes, RG, Baron, M A, Eigenmann, K R, Guren, M G, Heyn, B H, Løken, A, Mohn, CE: Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics 760, 165–198 (2019). https://doi.org/10.1016/j.tecto.2018.10.021 Tsiaras, A, Rocchetto, M, Waldmann, I P, Venot, O, Varley, R, Morello, G, Damiano, M, Tinetti, G, Barton, E J, Yurchenko, S N, Tennyson, J: Detection of an atmosphere around the super-Earth 55 Cancri e. ApJ 820(2), 99 (2016). https://doi.org/10.3847/0004-637X/820/2/99. arXiv:1511.08901 Tsiganis, K, Gomes, R, Morbidelli, A, Levison, H F: Origin of the orbital architecture of the giant planets of the Solar System. Nature 435(7041), 459–461 (2005). https://doi.org/10.1038/nature03539 Turrini, D, Miguel, Y, Zingales, T, Piccialli, A, Helled, R, Vazan, A, Oliva, F, Sindoni, G, Panić, O, Leconte, J, Min, M, Pirani, S, Selsis, F, Coudé du Foresto, V, Mura, A, Wolkenberg, P: The contribution of the ARIEL space mission to the study of planetary formation. Exp. Astron. 46(1), 45–65 (2018). https://doi.org/10.1007/s10686-017-9570-1. arXiv:1804.06179 Unterborn, C T, Panero, W R: The effects of mg/si on the exoplanetary refractory oxygen budget. Astrophys. J. 845(1), 61 (2017) Unterborn, CT, Hull, SD, Stixrude, LP, Teske, JK, Johnson, JA, Panero, WR: Stellar chemical clues as to the rarity of exoplanetary tectonics. arXiv:170610282 (2017) Valencia, D, Sasselov, D D, O’Connell, R J: Radius and structure models of the first super-Earth planet. ApJ 656(1), 545–551 (2007). https://doi.org/10.1086/509800. arXiv:astro-ph/0610122 Valencia, D, Guillot, T, Parmentier, V, Freedman, R S: Bulk composition of GJ 1214b and other sub-Neptune exoplanets. ApJ 775(1), 10 (2013). https://doi.org/10.1088/0004-637X/775/1/10. arXiv:1305.2629 Valletta, C, Helled, R: The distribution of heavy-elements in giant protoplanetary atmospheres: the importance of planetesimal-envelope interactions. arXiv:1811.10904 (2018) Valletta, C, Helled, R: Giant planet formation models with a self-consistent treatment of the heavy elements. ApJ 900(2), 133 (2020). https://doi.org/10.3847/1538-4357/aba904. arXiv:2007.13577 van Summeren, J, Conrad, CP, Gaidos, E: Mantle convection, plate tectonics, and volcanism on hot exo-Earths. ApJl 736(1), L15 (2011). https://doi.org/10.1088/2041-8205/736/1/L15. arXiv:1106.4341 Vazan, A, Kovetz, A, Podolak, M, Helled, R: The effect of composition on the evolution of giant and intermediate-mass planets. MNRAS 434, 3283–3292 (2013). https://doi.org/10.1093/mnras/stt1248. arXiv:1307.2033 Vazan, A, Helled, R, Kovetz, A, Podolak, M: Convection and mixing in giant planet evolution. ApJ 803, 32 (2015). https://doi.org/10.1088/0004-637X/803/1/32. arXiv:1502.03270 Vazan, A, Helled, R, Podolak, M, Kovetz, A: The evolution and internal structure of Jupiter and Saturn with compositional gradients. ApJ 829, 118 (2016). https://doi.org/10.3847/0004-637X/829/2/118. arXiv:1606.01558 Vazan, A, Helled, R, Guillot, T: Jupiter’s evolution with primordial composition gradients. A&A 610, L14 (2018). https://doi.org/10.1051/0004-6361/201732522. arXiv:1801.08149 Vazan, A, Ormel, C W, Noack, L, Dominik, C: Contribution of the core to the thermal evolution of sub-Neptunes. ApJ 869(2), 163 (2018). https://doi.org/10.3847/1538-4357/aaef33. arXiv:1811.02588 Venturini, J, Helled, R: The formation of mini-Neptunes. ApJ 848(2), 95 (2017). https://doi.org/10.3847/1538-4357/aa8cd0. arXiv:1709.04736 Wahl, S M, Wilson, H F, Militzer, B: Solubility of iron in metallic hydrogen and stability of dense cores in giant planets. ApJ 773, 95 (2013). https://doi.org/10.1088/0004-637X/773/2/95. arXiv:1303.6743 Wahl, S M, Hubbard, W B, Militzer, B, Guillot, T, Miguel, Y, Movshovitz, N, Kaspi, Y, Helled, R, Reese, D, Galanti, E, Levin, S, Connerney, J E, Bolton, S J: Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44(10), 4649–4659 (2017). https://doi.org/10.1002/2017GL073160. arXiv:1707.01997 Wang, H.S., Lineweaver, C.H., Ireland, T.R.: The volatility trend of protosolar and terrestrial elemental abundances. Icarus 328, 287–305 (2019) Williams, C.D., Mukhopadhyay, S.: Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565(7737), 78–81 (2019). https://doi.org/10.1038/s41586-018-0771-1 Wilson, H.F., Militzer, B.: Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. ApJ 745, 54 (2012). https://doi.org/10.1088/0004-637X/745/1/54 Wordsworth, R., Pierrehumbert, R.: Hydrogen-nitrogen greenhouse warming in earth’s early atmosphere. Science 339(6115), 64–67 (2013) Wu, Y., Lithwick, Y.: Ohmic heating suspends, not reverses, the cooling contraction of hot Jupiters. ApJ 763 (1), 13 (2013). https://doi.org/10.1088/0004-637X/763/1/13. arXiv:1202.0026 Youdin, A.N., Mitchell, J.L.: The mechanical greenhouse: burial of heat by turbulence in hot Jupiter atmospheres. ApJ 721(2), 1113–1126 (2010). https://doi.org/10.1088/0004-637X/721/2/1113. arXiv:1008.0645 Zeng, L., Jacobsen, S.B., Sasselov, D.D., Petaev, M.I., Vanderburg, A., Lopez-Morales, M., Perez-Mercader, J., Mattsson, T.R., Li, G., Heising, M.Z., Bonomo, A.S., Damasso, M., Berger, T.A., Cao, H., Levi, A., Wordsworth, R.D.: Growth model interpretation of planet size distribution. Proc. Natl. Acad. Sci. 116(20), 9723–9728 (2019). https://doi.org/10.1073/pnas.1812905116. arXiv:1906.04253 Zilinskas, M., Miguel, Y., Mollière, P., Tsai, S.M.: Atmospheric compositions and observability of nitrogen-dominated ultra-short-period super-Earths. MNRAS 494(1), 1490–1506 (2020). https://doi.org/10.1093/mnras/staa724. arXiv:2003.05354