Ariel planetary interiors White Paper
Tóm tắt
The recently adopted Ariel ESA mission will measure the atmospheric composition of a large number of exoplanets. This information will then be used to better constrain planetary bulk compositions. While the connection between the composition of a planetary atmosphere and the bulk interior is still being investigated, the combination of the atmospheric composition with the measured mass and radius of exoplanets will push the field of exoplanet characterisation to the next level, and provide new insights of the nature of planets in our galaxy. In this white paper, we outline the ongoing activities of the interior working group of the Ariel mission, and list the desirable theoretical developments as well as the challenges in linking planetary atmospheres, bulk composition and interior structure.
Tài liệu tham khảo
Adams, E R, Seager, S, Elkins-Tanton, L: Ocean planet or thick atmosphere: on the mass-radius relationship for solid exoplanets with massive atmospheres. ApJ 673(2), 1160–1164 (2008). https://doi.org/10.1086/524925. arXiv:0710.4941
Baraffe, I, Chabrier, G, Barman, TS, Allard, F, Hauschildt, PH: Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402, 701–712 (2003). https://doi.org/10.1051/0004-6361:20030252. arXiv:astro-ph/0302293
Baraffe, I, Chabrier, G, Barman, T: Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. A&A 482(1), 315–332 (2008). https://doi.org/10.1051/0004-6361:20079321. arXiv:0802.1810
Batygin, K, Stevenson, D J: Inflating hot Jupiters with ohmic dissipation. ApJl 714, L238–L243 (2010). https://doi.org/10.1088/2041-8205/714/2/L238. arXiv:1002.3650
Bodenheimer, P, Pollack, J B: Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67(3), 391–408 (1986). https://doi.org/10.1016/0019-1035(86)90122-3
Bodenheimer, P, Lin, D N C, Mardling, R A: On the tidal inflation of short-period extrasolar planets. ApJ 548, 466–472 (2001)
Bodenheimer, P, Stevenson, D J, Lissauer, J J, D’Angelo, G: New formation models for the kepler-36 system. ApJ 868(2), 138 (2018). https://doi.org/10.3847/1538-4357/aae928. arXiv:1810.07160
Bonati, I, Lichtenberg, T, Bower, D J, Timpe, M L, Quanz, S P: Direct imaging of molten protoplanets in nearby young stellar associations. A&A 621, A125 (2019). https://doi.org/10.1051/0004-6361/201833158. arXiv:1811.07411
Boujibar, A, Driscoll, P, Fei, Y: Super-Earth internal structures and initial thermal states. J. Geophys. Res. (Planets) 125(5), e06124 (2020). https://doi.org/10.1029/2019JE006124
Bower, D J, Kitzmann, D, Wolf, A S, Sanan, P, Dorn, C, Oza, A V: Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations. Astron. Astrophys. 631, A103 (2019). https://doi.org/10.1051/0004-6361/201935710. arXiv:1904.08300
Brouwers, M G, Vazan, A, Ormel, C W: How cores grow by pebble accretion. I. Direct core growth. A&A 611, A65 (2018). https://doi.org/10.1051/0004-6361/201731824. arXiv:1708.05392
Burrows, A, Guillot, T, Hubbard, W B, Marley, M S, Saumon, D, Lunine, J I, Sudarsky, D: On the radii of close-in giant planets. ApJl 534(1), L97–L100 (2000). https://doi.org/10.1086/312638. arXiv:astro-ph/0003185
Burrows, A, Hubeny, I, Budaj, J, Hubbard, W B: Possible solutions to the radius anomalies of transiting giant planets. ApJ 661 (1), 502–514 (2007). https://doi.org/10.1086/514326. arXiv:astro-ph/0612703
Chabrier, G, Baraffe, I: Heat transport in giant (Exo)planets: a new perspective. ApJl 661 (1), L81–L84 (2007). https://doi.org/10.1086/518473. arXiv:astro-ph/0703755
Chabrier, G, Gallardo, J, Baraffe, I: Evolution of low-mass star and brown dwarf eclipsing binaries. A&A 472(2), L17–L20 (2007). https://doi.org/10.1051/0004-6361:20077702. arXiv:0707.1792
Chatterjee, S, Chen, H: Effects of planetesimal accretion on the thermal and structural evolution of sub-Neptunes. ApJ 852(1), 58 (2018). https://doi.org/10.3847/1538-4357/aa9e05. arXiv:1708.05366
Dalou, C, Füri, E, Deligny, C, Piani, L, Caumon, M C, Laumonier, M, Boulliung, J, Edén, M: Redox control on nitrogen isotope fractionation during planetary core formation. Proc. Natl. Acad. Sci. 116(29), 14485–14494 (2019). https://doi.org/10.1073/pnas.1820719116
Debras, F, Chabrier, G: New models of Jupiter in the context of Juno and Galileo. ApJ 872(1), 100 (2019a). https://doi.org/10.3847/1538-4357/aaff65. arXiv:1901.05697
Demory, B O, Seager, S: Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. ApJs 197(1), 12 (2011). https://doi.org/10.1088/0067-0049/197/1/12. arXiv:1110.6180
Demory, B O, Gillon, M, de Wit, J, Madhusudhan, N, Bolmont, E, Heng, K, Kataria, T, Lewis, N, Hu, R, Krick, J, Stamenković, V, Benneke, B, Kane, S, Queloz, D: A map of the large day-night temperature gradient of a super-Earth exoplanet. Nature 532(7598), 207–209 (2016). https://doi.org/10.1038/nature17169. arXiv:1604.05725
Deng, J, Du, Z, Karki, B B, Ghosh, D B, Lee, K K M: A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres. Nat. Commun. 11, 2007 (2020). https://doi.org/10.1038/s41467-020-15757-0
Dorn, C, Khan, A, Heng, K, Connolly, J A D, Alibert, Y, Benz, W, Tackley, P: Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? A&A 577, A83 (2015). https://doi.org/10.1051/0004-6361/201424915. arXiv:1502.03605
Dorn, C, Noack, L, Rozel, A: Outgassing on stagnant-lid super-earths. Astron. Astrophys. 614, A18 (2018)
Dorn, C, Harrison, J H, Bonsor, A, Hands, T O: A new class of super-earths formed from high-temperature condensates: Hd219134 b, 55 cnc e, wasp-47 e. Mon. Not. R. Astron. Soc. 484(1), 712–727 (2019)
Edwards, B, Mugnai, L, Tinetti, G, Pascale, E, Sarkar, S: An updated study of potential targets for Ariel. AJ 157(6), 242 (2019). https://doi.org/10.3847/1538-3881/ab1cb9. arXiv:1905.04959
Ehrenreich, D, Lovis, C, Allart, R, Zapatero Osorio, M R, Pepe, F, Cristiani, S, Rebolo, R, Santos, N C, Borsa, F, Demangeon, O, Dumusque, X, González Hernández, J I, Casasayas-Barris, N, Ségransan, D, Sousa, S, Abreu, M, Adibekyan, V, Affolter, M, Allende Prieto, C, Alibert, Y, Aliverti, M, Alves, D, Amate, M, Avila, G, Baldini, V, Bandy, T, Benz, W, Bianco, A, Bolmont, É, Bouchy, F, Bourrier, V, Broeg, C, Cabral, A, Calderone, G, Pallé, E, Cegla, H M, Cirami, R, Coelho, J M P, Conconi, P, Coretti, I, Cumani, C, Cupani, G, Dekker, H, Delabre, B, Deiries, S, D’Odorico, V, Di Marcantonio, P, Figueira, P, Fragoso, A, Genolet, L, Genoni, M, Génova Santos, R, Hara, N, Hughes, I, Iwert, O, Kerber, F, Knudstrup, J, Land oni, M, Lavie, B, Lizon, J L, Lendl, M, Lo Curto, G, Maire, C, Manescau, A, Martins, C J A P, Mégevand, D, Mehner, A, Micela, G, Modigliani, A, Molaro, P, Monteiro, M, Monteiro, M, Moschetti, M, Müller, E, Nunes, N, Oggioni, L, Oliveira, A, Pariani, G, Pasquini, L, Poretti, E, Rasilla, J L, Redaelli, E, Riva, M, Santana Tschudi, S, Santin, P, Santos, P, Segovia Milla, A, Seidel, J V, Sosnowska, D, Sozzetti, A, Spanò, P, Suárez Mascareño, A, Tabernero, H, Tenegi, F, Udry, S, Zanutta, A, Zerbi, F: Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580(7805), 597–601 (2020). https://doi.org/10.1038/s41586-020-2107-1. arXiv:2003.05528
Eistrup, C, Walsh, C, van Dishoeck, E F: Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? A&A 595, A83 (2016). https://doi.org/10.1051/0004-6361/201628509. arXiv:1607.06710
Elkins-Tanton, LT: Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40 (1), 113–139 (2012). https://doi.org/10.1146/annurev-earth-042711-105503
Elkins-Tanton, LT, Seager, S: Coreless terrestrial exoplanets. ApJ 688 (1), 628–635 (2008). https://doi.org/10.1086/592316. arXiv:0808.1908
Elser, S, Meyer, M R, Moore, B: On the origin of elemental abundances in the terrestrial planets. Icarus 221(2), 859–874 (2012)
Fischer, R A, Cottrell, E, Hauri, E, Lee, K K M, Le Voyer, M: The carbon content of earth and its core. Proc. Natl. Acad. Sci. 117(16), 8743–8749 (2020). https://doi.org/10.1073/pnas.1919930117. https://www.pnas.org/content/117/16/8743, https://www.pnas.org/content/117/16/8743.full.pdf
Fletcher, L N, Helled, R, Roussos, E, Jones, G, Charnoz, S, André, N, Andrews, D, Bannister, M, Bunce, E, Cavalié, T, Ferri, F, Fortney, J, Grassi, D, Griton, L, Hartogh, P, Hueso, R, Kaspi, Y, Lamy, L, Masters, A, Melin, H, Moses, J, Mousis, O, Nettleman, N, Plainaki, C, Schmidt, J, Simon, A, Tobie, G, Tortora, P, Tosi, F, Turrini, D: Ice giant systems: the scientific potential of orbital missions to Uranus and Neptune. Planet. Space Sci. 191, 105030 (2020). https://doi.org/10.1016/j.pss.2020.105030. arXiv:1907.02963
Foley, B J, Driscoll, P E: Whole planet coupling between climate, mantle, and core: implications for rocky planet evolution. Geochem., Geophys. Geosyst. 17 (5), 1885–1914 (2016). https://doi.org/10.1002/2015GC006210. arXiv:1711.06801
Fortney, J J, Hubbard, W B: Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164, 228–243 (2003)
Fortney, J J, Ikoma, M, Nettelmann, N, Guillot, T, Marley, M S: Self-consistent model atmospheres and the cooling of the solar system’s giant planets. ApJ 729(1), 32 (2011). https://doi.org/10.1088/0004-637X/729/1/32. arXiv:1101.0606
Frost, D J, McCammon, C A: The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008). https://doi.org/10.1146/annurev.earth.36.031207.124322
Fulton, B J, Petigura, E A, Howard, A W, Isaacson, H, Marcy, G W, Cargile, P A, Hebb, L, Weiss, L M, Johnson, J A, Morton, T D, Sinukoff, E, Crossfield, I J M, Hirsch, L A: The california-kepler survey. iii. A gap in the radius distribution of small planets. AJ 154, 109 (2017). arXiv:1703.10375
Gaidos, E, Conrad, C P, Manga, M, Hernlund, J: Thermodynamic limits on magnetodynamos in rocky exoplanets. ApJ 718(2), 596–609 (2010). https://doi.org/10.1088/0004-637X/718/2/596. arXiv:1005.3523
Ginzburg, S, Sari, R: Hot-Jupiter inflation due to deep energy deposition. ApJ 803(2), 111 (2015). https://doi.org/10.1088/0004-637X/803/2/111. arXiv:1501.02087
Ginzburg, S, Sari, R: Extended heat deposition in hot Jupiters: application to ohmic heating. ApJ 819(2), 116 (2016). https://doi.org/10.3847/0004-637X/819/2/116. arXiv:1511.00135
Guillot, T: Interior of giant planets inside and outside the solar system. Science 286, 72–77 (1999). https://doi.org/10.1126/science.286.5437.72
Guillot, T: The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005). arXiv:astro-ph/0502068
Guillot, T, Showman, A P: Evolution of “51 pegasus b-like” planets. A&A 385, 156–165 (2002). arXiv:astro-ph/0202234
Guillot, T, Burrows, A, Hubbard, W B, Lunine, J I, Saumon, D: Giant planets at small orbital distances. ApJl 459, L35–L39 (1996). arXiv:astro-ph/9511109
Guillot, T, Santos, NC, Pont, F, Iro, N, Melo, C, Ribas, I: A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A 453(2), L21–L24 (2006). https://doi.org/10.1051/0004-6361:20065476. arXiv:astro-ph/0605751
Guillot, T, Fortney, J, Rauscher, E, Marley, M S, Parmentier, V, Line, M, Wakeford, H, Kaspi, Y, Helled, R, Ikoma, M, Knutson, H, Menou, K, Valencia, D, Durante, D, Ida, S, Bolton, S J, Li, C, Stevenson, K B, Bean, J, Cowan, N B, Hofstadter, M D, Hueso, R, Leconte, J, Li, L, Mordasini, C, Mousis, O, Nettelmann, N, Soderlund, K, Wong, M H: Keys of a mission to Uranus or Neptune, the closest ice giants. arXiv:2012.09863 (2020)
Helled, R: The interiors of Jupiter and Saturn, p 175. https://doi.org/10.1093/acrefore/9780190647926.013.175 (2019)
Helled, R, Bodenheimer, P: The formation of Uranus and Neptune: challenges and implications for intermediate-mass exoplanets. ApJ 789(1), 69 (2014). https://doi.org/10.1088/0004-637X/789/1/69. arXiv:1404.5018
Helled, R, Fortney, J J: The interiors of Uranus and Neptune: current understanding and open questions. Phil Trans R Soc A 378, 20190474 (2020). https://doi.org/10.1098/rsta.2019.0474
Helled, R, Lunine, J: Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. MNRAS 441(3), 2273–2279 (2014). https://doi.org/10.1093/mnras/stu516. arXiv:1403.2891
Helled, R, Stevenson, D: The fuzziness of giant planets’ cores. ApJl 840(1), L4 (2017). https://doi.org/10.3847/2041-8213/aa6d08. arXiv:1704.01299
Helled, R, Bodenheimer, P, Podolak, M, Boley, A, Meru, F, Nayakshin, S, Fortney, JJ, Mayer, L, Alibert, Y, Boss, AP: Giant planet formation, evolution, and internal structure. In: Beuther, H, Klessen, RS, Dullemond, CP, Henning, T (eds.) Protostars and Planets VI, p 643 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch028. arXiv:1311.1142
Helled, R, Nettelmann, N, Guillot, T: Uranus and Neptune: origin, evolution and internal structure. Space Sci. Rev. 216(3), 38 (2020). https://doi.org/10.1007/s11214-020-00660-3. arXiv:1909.04891
Hevey, P J, Sanders, I S: A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41(1), 95–106 (2006). https://doi.org/10.1111/j.1945-5100.2006.tb00195.x
Hirose, K, Tagawa, S, Kuwayama, Y, Sinmyo, R, Morard, G, Ohishi, Y, Genda, H: Hydrogen limits carbon in liquid iron. Geophys. Res. Lett. 46(10), 5190–5197 (2019). https://doi.org/10.1029/2019GL082591
Hirschmann, M M: Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341, 48–57 (2012). https://doi.org/10.1016/j.epsl.2012.06.015
Hirschmann, M M: Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101(3), 540–553 (2016). https://doi.org/10.2138/am-2016-5452
Howe, A R, Burrows, A, Verne, W: Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes. ApJ 787(2), 173 (2014). https://doi.org/10.1088/0004-637X/787/2/173. arXiv:1402.4818
Huang, X, Cumming, A: Ohmic dissipation in the interiors of hot Jupiters. ApJ 757(1), 47 (2012). https://doi.org/10.1088/0004-637X/757/1/47. arXiv:1207.3278
Hubbard, W B: The Jovian surface condition and cooling rate. Icarus 30, 305–310 (1977)
Iaroslavitz, E, Podolak, M: Atmospheric mass deposition by captured planetesimals. Icarus 187, 600–610 (2007). https://doi.org/10.1016/j.icarus.2006.10.008
Ikoma, M, Guillot, T, Genda, H, Tanigawa, T, Ida, S: On the Origin of HD 149026b. ApJ 650(2), 1150–1159 (2006). https://doi.org/10.1086/507088. arXiv:astro-ph/0607212
Ikoma, M, Elkins-Tanton, L, Hamano, K, Suckale, J: Water partitioning in planetary embryos and protoplanets with magma oceans. Space Sci Rev 214(4), 76 (2018). https://doi.org/10.1007/s11214-018-0508-3. arXiv:1804.09294
Ito, Y, Ikoma, M, Kawahara, H, Nagahara, H, Kawashima, Y, Nakamoto, T: Theoretical emission spectra of atmospheres of hot rocky super-Earths. ApJ 801(2), 144 (2015). https://doi.org/10.1088/0004-637X/801/2/144. arXiv:1501.05393
Jin, S, Mordasini, C: Compositional imprints in density-distance-time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. ApJ 853(2), 163 (2018). https://doi.org/10.3847/1538-4357/aa9f1e. arXiv:1706.00251
Jontof-Hutter, D: The compositional diversity of low-mass exoplanets. Annu. Rev. Earth Planet. Sci. 47, 141–171 (2019). https://doi.org/10.1146/annurev-earth-053018-060352. arXiv:1911.04598
Kaltenegger, L: How to characterize habitable worlds and signs of life. ARA&A 55(1), 433–485 (2017). https://doi.org/10.1146/annurev-astro-082214-122238. arXiv:1911.05597
Kite, E S, Bruce, Fegley J, Schaefer, L, Ford, E B: Superabundance of exoplanet sub-Neptunes explained by fugacity crisis. ApJl 887(2), L33 (2019). https://doi.org/10.3847/2041-8213/ab59d9. arXiv:1912.02701
Komacek, T D, Youdin, A N: Structure and evolution of internally heated hot Jupiters. ApJ 844(2), 94 (2017). https://doi.org/10.3847/1538-4357/aa7b75. arXiv:1706.07605
Komacek, T D, Thorngren, D P, Lopez, E D, Ginzburg, S: Reinflation of warm and hot Jupiters. ApJ 893(1), 36 (2020). https://doi.org/10.3847/1538-4357/ab7eb4. arXiv:2003.04877
Kreidberg, L, Koll, D D B, Morley, C, Hu, R, Schaefer, L, Deming, D, Stevenson, K B, Dittmann, J, Vanderburg, A, Berardo, D, Guo, X, Stassun, K, Crossfield, I, Charbonneau, D, Latham, D W, Loeb, A, Ricker, G, Seager, S, Vand erspek, R: Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b. Nature 573 (7772), 87–90 (2019). https://doi.org/10.1038/s41586-019-1497-4. arXiv:1908.06834
Kuchner, M J: Volatile-rich Earth-mass planets in the habitable zone. ApJl 596(1), L105–L108 (2003). https://doi.org/10.1086/378397. arXiv:astro-ph/0303186
Kunitomo, M, Guillot, T, Ida, S, Takeuchi, T: Revisiting the pre-main-sequence evolution of stars. II. Consequences of planet formation on stellar surface composition. A&A 618, A132 (2018). https://doi.org/10.1051/0004-6361/201833127. arXiv:1808.07396
Kurosaki, K, Ikoma, M, Hori, Y: Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. A&A 562, A80 (2014). https://doi.org/10.1051/0004-6361/201322258. arXiv:1307.3034
Lambrechts, M, Morbidelli, A, Jacobson, S A, Johansen, A, Bitsch, B, Izidoro, A, Raymond, S N: Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. A&A 627, A83 (2019). https://doi.org/10.1051/0004-6361/201834229. arXiv:1902.08694
Laughlin, G, Lissauer, J J: Exoplanetary geophysics—an emerging discipline. arXiv:1501.05685 (2015)
Laughlin, G, Crismani, M, Adams, F C: On the anomalous radii of the transiting extrasolar planets. ApJl 729(1), L7 (2011). https://doi.org/10.1088/2041-8205/729/1/L7. arXiv:1101.5827
Leconte, J: Continuous reorientation of synchronous terrestrial planets due to mantle convection. Nat. Geosci. 11(3), 168–172 (2018). https://doi.org/10.1038/s41561-018-0071-2. arXiv:1809.01150
Leconte, J, Chabrier, G: A new vision of giant planet interiors: impact of double diffusive convection. A&A 540, A20 (2012). https://doi.org/10.1051/0004-6361/201117595. arXiv:1201.4483
Ledoux, P: Stellar models with convection and with discontinuity of the mean molecular weight. ApJ 105, 305 (1947). https://doi.org/10.1086/144905
Léger, A, Selsis, F, Sotin, C, Guillot, T, Despois, D, Mawet, D, Ollivier, M, Labèque, A, Valette, C, Brachet, F, Chazelas, B, Lammer, H: A new family of planets? “ocean-planets”. Icarus 169(2), 499–504 (2004). https://doi.org/10.1016/j.icarus.2004.01.001. arXiv:astro-ph/0308324
Lichtenberg, T, Golabek, G J, Gerya, T V, Meyer, M R: The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016). https://doi.org/10.1016/j.icarus.2016.03.004. arXiv:1603.05979
Lichtenberg, T, Parker, R J, Meyer, M R: Isotopic enrichment of forming planetary systems from supernova pollution. Mon Not R Astron Soc 462(4), 3979–3992 (2016). https://doi.org/10.1093/mnras/stw1929. arXiv:1608.01435
Lichtenberg, T, Golabek, G J, Burn, R, Meyer, M R, Alibert, Y, Gerya, T V, Mordasini, C: A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307–313 (2019). https://doi.org/10.1038/s41550-018-0688-5. arXiv:1902.04026
Lin, D N C, Bodenheimer, P, Richardson, D C: Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380 (6575), 606–607 (1996). https://doi.org/10.1038/380606a0
Lopez, E D: Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. MNRAS 472(1), 245–253 (2017). https://doi.org/10.1093/mnras/stx1558. arXiv:1610.01170
Lourenço, D L, Rozel, A, Tackley, P J: Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett. 439, 18–28 (2016). https://doi.org/10.1016/j.epsl.2016.01.024
Lourenço, D L, Rozel, A B, Gerya, T, Tackley, P J: Efficient cooling of rocky planets by intrusive magmatism. Nat. Geosci. 11(5), 322–327 (2018). https://doi.org/10.1038/s41561-018-0094-8
Lozovsky, M, Helled, R, Rosenberg, E D, Bodenheimer, P: Jupiter’s formation and its primordial internal structure. ApJ 836, 227 (2017). https://doi.org/10.3847/1538-4357/836/2/227. arXiv:1701.01719
Lozovsky, M, Helled, R, Dorn, C, Venturini, J: Threshold radii of volatile-rich planets. Astrophys. J. 866(1), 49 (2018)
Madhusudhan, N: Exoplanetary atmospheres: key insights, challenges, and prospects. ARA&A 57, 617–663 (2019). https://doi.org/10.1146/annurev-astro-081817-051846. arXiv:1904.03190
Madhusudhan, N, Lee, KKM, Mousis, O: A possible carbon-rich interior in super-Earth 55 Cancri e. ApJl 759(2), L40 (2012). https://doi.org/10.1088/2041-8205/759/2/L40. arXiv:1210.2720
Madhusudhan, N, Bitsch, B, Johansen, A, Eriksson, L: Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS 469(4), 4102–4115 (2017). https://doi.org/10.1093/mnras/stx1139. arXiv:1611.03083
Meier, T, Bower, DJ, Lichtenberg, T, Tackley, PJ: Interior dynamics of tidally locked super-Earths: the case of LHS 3844b. In: Europlanet Science Congress 2020, vol. 2020, pp EPSC2020–778 (2020)
Miguel, Y: Observability of molecular species in a nitrogen dominated atmosphere for 55 Cancri e. MNRAS 482(3), 2893–2901 (2019). https://doi.org/10.1093/mnras/sty2803. arXiv:1809.08230
Miguel, Y, Kaltenegger, L, Fegley, B, Schaefer, L: Compositions of hot super-Earth atmospheres: exploring Kepler candidates. ApJl 742(2), L19 (2011). https://doi.org/10.1088/2041-8205/742/2/L19. arXiv:1110.2426
Miller, N, Fortney, J J: The Heavy-element masses of extrasolar giant planets, revealed. ApJl 736(2), L29 (2011). https://doi.org/10.1088/2041-8205/736/2/L29. arXiv:1105.0024
Miozzi, F, Morard, G, Antonangeli, D, Clark, A N, Mezouar, M, Dorn, C, Rozel, A, Fiquet, G: Equation of state of SiC at extreme conditions: new insight into the interior of carbon-rich exoplanets. J. Geophys. Res. (Planets) 123(9), 2295–2309 (2018). https://doi.org/10.1029/2018JE005582. arXiv:1808.08201
Miyagoshi, T, Kameyama, M, Ogawa, M: Effects of adiabatic compression on thermal convection in super-Earths of various sizes. Earth Planets Space 70(1), 200 (2018). https://doi.org/10.1186/s40623-018-0975-5
Mizuno, H: Formation of the giant planets. Prog. Theor. Phys. 64(2), 544–557 (1980). https://doi.org/10.1143/PTP.64.544
Mol Lous, M, Miguel, Y: Inflation of migrated hot Jupiters. MNRAS 495(3), 2994–3001 (2020). https://doi.org/10.1093/mnras/staa1405. arXiv:2005.04927
Morales, M A, Schwegler, E, Ceperley, D, Pierleoni, C, Hamel, S, Caspersen, K: Phase separation in hydrogen-helium mixtures at Mbar pressures. Proc. Natl. Acad. Sci. 106, 1324 (2009). https://doi.org/10.1073/pnas.0812581106. arXiv:0903.0980
Müller, S, Ben-Yami, M, Helled, R: Theoretical versus observational uncertainties: composition of giant exoplanets. ApJ 903(2), 147 (2020). https://doi.org/10.3847/1538-4357/abba19. arXiv:2009.09746
Müller, S, Helled, R, Cumming, A: The challenge of forming a fuzzy core in Jupiter. arXiv:2004.13534 (2020)
Ni, D: Understanding Jupiter’s deep interior: the effect of a dilute core. A&A 632, A76 (2019). https://doi.org/10.1051/0004-6361/201935938
Öberg, K I, Bergin, E A: Excess c/o and c/h in outer protoplanetary disk gas. Astrophys. J. Lett. 831(2), L19 (2016)
Öberg, K I, Wordsworth, R: Jupiter’s composition suggests its core assembled exterior to the N2 snowline. AJ 158(5), 194 (2019). https://doi.org/10.3847/1538-3881/ab46a8. arXiv:1909.11246
Öberg, K I, Murray-Clay, R, Bergin, E A: The effects of snowlines on C/O in planetary atmospheres. ApJl 743 (1), L16 (2011). https://doi.org/10.1088/2041-8205/743/1/L16. arXiv:1110.5567
Olson, P L, Sharp, Z D: Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019). https://doi.org/10.1016/j.pepi.2019.106294
O’Neill, C, Lenardic, A, Weller, M, Moresi, L, Quenette, S, Zhang, S: A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016). https://doi.org/10.1016/j.pepi.2016.04.002
Otegi, J F, Bouchy, F, Helled, R: Revisited mass-radius relations for exoplanets below 120 M⊕. A&A 634, A43 (2020). https://doi.org/10.1051/0004-6361/201936482. arXiv:1911.04745
Owen, J E, Wu, Y: The evaporation valley in the Kepler planets. ApJ 847(1), 29 (2017). https://doi.org/10.3847/1538-4357/aa890a. arXiv:1705.10810
Parmentier, V, Fortney, J J, Showman, A P, Morley, C, Marley, M S: Transitions in the cloud composition of hot Jupiters. ApJ 828 (1), 22 (2016). https://doi.org/10.3847/0004-637X/828/1/22. arXiv:1602.03088
Perna, R, Menou, K, Rauscher, E: Ohmic dissipation in the atmospheres of hot Jupiters. ApJ 724(1), 313–317 (2010). https://doi.org/10.1088/0004-637X/724/1/313. arXiv:1009.3273
Pinhas, A, Madhusudhan, N, Gandhi, S, MacDonald, R: H2O abundances and cloud properties in ten hot giant exoplanets. MNRAS 482 (2), 1485–1498 (2019). https://doi.org/10.1093/mnras/sty2544. arXiv:1811.00011
Plotnykov, M, Valencia, D: Chemical fingerprints of formation in rocky super-earths’ data. Mon. Not. R. Astron. Soc. 499(1), 932–947 (2020)
Rauer, H, Catala, C, Aerts, C, Appourchaux, T, Benz, W, Brandeker, A, Christensen-Dalsgaard, J, Deleuil, M, Gizon, L, Goupil, M J, Güdel, M, Janot-Pacheco, E, Mas-Hesse, M, Pagano, I, Piotto, G, Pollacco, D, Santos, C, Smith, A, Suárez, J C, Szabó, R, Udry, S, Adibekyan, V, Alibert, Y, Almenara, J M, Amaro-Seoane, P, Eiff, MAV, Asplund, M, Antonello, E, Barnes, S, Baudin, F, Belkacem, K, Bergemann, M, Bihain, G, Birch, A C, Bonfils, X, Boisse, I, Bonomo, A S, Borsa, F, Brandão, I M, Brocato, E, Brun, S, Burleigh, M, Burston, R, Cabrera, J, Cassisi, S, Chaplin, W, Charpinet, S, Chiappini, C, Church, R P, Csizmadia, S, Cunha, M, Damasso, M, Davies, M B, Deeg, H J, Díaz, RF, Dreizler, S, Dreyer, C, Eggenberger, P, Ehrenreich, D, Eigmüller, P, Erikson, A, Farmer, R, Feltzing, S, de Oliveira Fialho, F, Figueira, P, Forveille, T, Fridlund, M, García, RA, Giommi, P, Giuffrida, G, Godolt, M, Gomes da Silva, J, Granzer, T, Grenfell, JL, Grotsch-Noels, A, Günther, E, Haswell, CA, Hatzes, AP, Hébrard, G, Hekker, S, Helled, R, Heng, K, Jenkins, JM, Johansen, A, Khodachenko, ML, Kislyakova, KG, Kley, W, Kolb, U, Krivova, N, Kupka, F, Lammer, H, Lanza, AF, Lebreton, Y, Magrin, D, Marcos-Arenal, P, Marrese, PM, Marques, JP, Martins, J, Mathis, S, Mathur, S, Messina, S, Miglio, A, Montalban, J, Montalto, M, Monteiro, MJPFG, Moradi, H, Moravveji, E, Mordasini, C, Morel, T, Mortier, A, Nascimbeni, V, Nelson, RP, Nielsen, MB, Noack, L, Norton, AJ, Ofir, A, Oshagh, M, Ouazzani, RM, Pápics, P, Parro, VC, Petit, P, Plez, B, Poretti, E, Quirrenbach, A, Ragazzoni, R, Raimondo, G, Rainer, M, Reese, DR, Redmer, R, Reffert, S, Rojas-Ayala, B, Roxburgh, IW, Salmon, S, Santerne, A, Schneider, J, Schou, J, Schuh, S, Schunker, H, Silva-Valio, A, Silvotti, R, Skillen, I, Snellen, I, Sohl, F, Sousa, SG, Sozzetti, A, Stello, D, Strassmeier, KG, Švanda, M, Szabó, GM, Tkachenko, A, Valencia, D, Van Grootel, V, Vauclair, SD, Ventura, P, Wagner, FW, Walton, NA, Weingrill, J, Werner, SC, Wheatley, PJ, Zwintz, K: The PLATO 2.0 mission. Exp. Astron. 38(1–2), 249–330 (2014). https://doi.org/10.1007/s10686-014-9383-4. arXiv:1310.0696
Rauscher, E, Menou, K: Three-DIMENSIONAL ATMOSPHERIC CIRCULATION Models of HD 189733b and HD 209458b with consistent magnetic drag and ohmic dissipation. ApJ 764(1), 103 (2013). https://doi.org/10.1088/0004-637X/764/1/103. arXiv:1208.2274
Rauscher, E, Showman, A P: The influence of differential irradiation and circulation on the thermal evolution of gas giant planets. I. Upper limits from radiative equilibrium. ApJ 784(2), 160 (2014). https://doi.org/10.1088/0004-637X/784/2/160. arXiv:1309.7052
Rimmer, P B, Rugheimer, S: Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 329, 124–131 (2019)
Rogers, T M, Showman, A P: Magnetohydrodynamic simulations of the atmosphere of HD 209458b. ApJl 782(1), L4 (2014). https://doi.org/10.1088/2041-8205/782/1/L4. arXiv:1401.5815
Rubie, D C, Jacobson, S A, Morbidelli, A, O’Brien, D P, Young, E D, de Vries, J, Nimmo, F, Palme, H, Frost, D J: Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015). https://doi.org/10.1016/j.icarus.2014.10.015. arXiv:1410.3509
Sainsbury-Martinez, F, Wang, P, Fromang, S, Tremblin, P, Dubos, T, Meurdesoif, Y, Spiga, A, Leconte, J, Baraffe, I, Chabrier, G, Mayne, N, Drummond, B, Debras, F: Idealised simulations of the deep atmosphere of hot Jupiters. Deep, hot adiabats as a robust solution to the radius inflation problem. A&A 632, A114 (2019). https://doi.org/10.1051/0004-6361/201936445. arXiv:1911.06546
Salvador, A, Massol, H, Davaille, A, Marcq, E, Sarda, P, Chassefière, E: The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res. (Planets) 122(7), 1458–1486 (2017). https://doi.org/10.1002/2017JE005286
Sato, B, Fischer, DA, Henry, GW, Laughlin, G, Butler, RP, Marcy, GW, Vogt, SS, Bodenheimer, P, Ida, S, Toyota, E, Wolf, A, Valenti, JA, Boyd, LJ, Johnson, JA, Wright, JT, Ammons, M, Robinson, S, Strader, J, McCarthy, C, Tah, KL, Minniti, D: The N2K Consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. ApJ 633(1), 465–473 (2005). https://doi.org/10.1086/449306. arXiv:astro-ph/0507009
Schaefer, L, Bruce, FJ: Redox states of initial atmospheres outgassed on rocky planets and planetesimals. ApJ 843 (2), 120 (2017). https://doi.org/10.3847/1538-4357/aa784f
Schaefer, L, Elkins-Tanton, L T: Magma oceans as a critical stage in the tectonic development of rocky planets. Philos. Trans. R. Soc. Lond. Ser. A 376(2132), 20180109 (2018). https://doi.org/10.1098/rsta.2018.0109. arXiv:1809.01629
Schaefer, L, Fegley, B: Chemistry of silicate atmospheres of evaporating super-Earths. ApJl 703(2), L113–L117 (2009). https://doi.org/10.1088/0004-637X/703/2/L113. arXiv:0906.1204
Schaefer, L, Lodders, K, Fegley, B: Vaporization of the Earth: application to exoplanet atmospheres. ApJ 755(1), 41 (2012). https://doi.org/10.1088/0004-637X/755/1/41. arXiv:1108.4660
Schaefer, L, Wordsworth, R D, Berta-Thompson, Z, Sasselov, D: Predictions of the Atmospheric Composition of GJ. ApJ 829(2), 63 (1132b). https://doi.org/10.3847/0004-637X/829/2/63. arXiv:1607.03906
Schulze, J, Wang, J, Johnson, J, Unterborn, C, Panero, W: The probability that a rocky planet’s composition reflects its host star. arXiv:1201108893 (2020)
Shibata, S, Ikoma, M: Capture of solids by growing proto-gas giants: effects of gap formation and supply limited growth. MNRAS 487(4), 4510–4524 (2019). https://doi.org/10.1093/mnras/stz1629. arXiv:1906.05530
Shibata, S, Helled, R, Ikoma, M: The origin of the high metallicity of close-in giant exoplanets. Combined effects of resonant and aerodynamic shepherding. A&A 633, A33 (2020). https://doi.org/10.1051/0004-6361/201936700. arXiv:1911.02292
Showman, AP, Guillot, T: Atmospheric circulation and tides of “51 Pegasus b-like” planets. A&A 385, 166–180 (2002). https://doi.org/10.1051/0004-6361:20020101
Soubiran, F, Militzer, B, Driver, K P, Zhang, S: Properties of hydrogen, helium, and silicon dioxide mixtures in giant planet interiors. Phys. Plasmas 24(4), 041401 (2017). https://doi.org/10.1063/1.4978618. arXiv:1703.09840
Spaargaren, R J, Ballmer, M D, Bower, D J, Dorn, C, Tackley, P J: The influence of bulk composition on the long-term interior-atmosphere evolution of terrestrial exoplanets. Astron. Astrophys. 643, A44 (2020)
Spiegel, D S, Fortney, J J, Sotin, C: Structure of exoplanets. Proc. Natl. Acad. Sci. 111(35), 12622–12627 (2014). https://doi.org/10.1073/pnas.1304206111. arXiv:1312.3323
Stevenson, D J, Salpeter, E E: The dynamics and helium distribution in hydrogen-helium fluid planets. ApJs 35, 239–261 (1977). https://doi.org/10.1086/190479
Tackley, P J, Ammann, M, Brodholt, J P, Dobson, D P, Valencia, D: Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225(1), 50–61 (2013). https://doi.org/10.1016/j.icarus.2013.03.013. arXiv:1204.3539
Tanaka, H, Takeuchi, T, Ward, W R: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad Torques and planet migration. ApJ 565(2), 1257–1274 (2002). https://doi.org/10.1086/324713
Thorngren, D P, Fortney, J J: Bayesian analysis of hot-Jupiter radius anomalies: evidence for ohmic dissipation? AJ 155(5), 214 (2018). https://doi.org/10.3847/1538-3881/aaba13. arXiv:1709.04539
Thorngren, D P, Fortney, J J, Murray-Clay, R A, Lopez, E D: The mass-metallicity relation for giant planets. ApJ 831(1), 64 (2016). https://doi.org/10.3847/0004-637X/831/1/64. arXiv:1511.07854
Tinetti, G, Drossart, P, Eccleston, P, Hartogh, P, Heske, A, Leconte, J, Micela, G, Ollivier, M, Pilbratt, G, Puig, L, Turrini, D, Vandenbussche, B, Wolkenberg, P, Beaulieu, J P, Buchave, L A, Ferus, M, Griffin, M, Guedel, M, Justtanont, K, Lagage, P O, Machado, P, Malaguti, G, Min, M, Nørgaard-Nielsen, HU, Rataj, M, Ray, T, Ribas, I, Swain, M, Szabo, R, Werner, S, Barstow, J, Burleigh, M, Cho, J, du Foresto, V C, Coustenis, A, Decin, L, Encrenaz, T, Galand, M, Gillon, M, Helled, R, Morales, J C, Muñoz, A G, Moneti, A, Pagano, I, Pascale, E, Piccioni, G, Pinfield, D, Sarkar, S, Selsis, F, Tennyson, J, Triaud, A, Venot, O, Waldmann, I, Waltham, D, Wright, G, Amiaux, J, Auguères, J L, Berthé, M, Bezawada, N, Bishop, G, Bowles, N, Coffey, D, Colomé, J, Crook, M, Crouzet, P E, Da Peppo, V, Sanz, I E, Focardi, M, Frericks, M, Hunt, T, Kohley, R, Middleton, K, Morgante, G, Ottensamer, R, Pace, E, Pearson, C, Stamper, R, Symonds, K, Rengel, M, Renotte, E, Ade, P, Affer, L, Alard, C, Allard, N, Altieri, F, André, Y, Arena, C, Argyriou, I, Aylward, A, Baccani, C, Bakos, G, Banaszkiewicz, M, Barlow, M, Batista, V, Bellucci, G, Benatti, S, Bernardi, P, Bézard, B, Blecka, M, Bolmont, E, Bonfond, B, Bonito, R, Bonomo, A S, Brucato, J R, Brun, A S, Bryson, I, Bujwan, W, Casewell, S, Charnay, B, Pestellini, C C, Chen, G, Ciaravella, A, Claudi, R, Clédassou, R, Damasso, M, Damiano, M, Danielski, C, Deroo, P, Di Giorgio, A M, Dominik, C, Doublier, V, Doyle, S, Doyon, R, Drummond, B, Duong, B, Eales, S, Edwards, B, Farina, M, Flaccomio, E, Fletcher, L, Forget, F, Fossey, S, Fränz, M, Fujii, Y, García-Piquer, Á, Gear, W, Geoffray, H, Gérard, JC, Gesa, L, Gomez, H, Graczyk, R, Griffith, C, Grodent, D, Guarcello, MG, Gustin, J, Hamano, K, Hargrave, P, Hello, Y, Heng, K, Herrero, E, Hornstrup, A, Hubert, B, Ida, S, Ikoma, M, Iro, N, Irwin, P, Jarchow, C, Jaubert, J, Jones, H, Julien, Q, Kameda, S, Kerschbaum, F, Kervella, P, Koskinen, T, Krijger, M, Krupp, N, Lafarga, M, Landini, F, Lellouch, E, Leto, G, Luntzer, A, Rank-Lüftinger, T, Maggio, A, Maldonado, J, Maillard, JP, Mall, U, Marquette, JB, Mathis, S, Maxted, P, Matsuo, T, Medvedev, A, Miguel, Y, Minier, V, Morello, G, Mura, A, Narita, N, Nascimbeni, V, Nguyen Tong, N, Noce, V, Oliva, F, Palle, E, Palmer, P, Pancrazzi, M, Papageorgiou, A, Parmentier, V, Perger, M, Petralia, A, Pezzuto, S, Pierrehumbert, R, Pillitteri, I, Piotto, G, Pisano, G, Prisinzano, L, Radioti, A, Réess, JM, Rezac, L, Rocchetto, M, Rosich, A, Sanna, N, Santerne, A, Savini, G, Scandariato, G, Sicardy, B, Sierra, C, Sindoni, G, Skup, K, Snellen, I, Sobiecki, M, Soret, L, Sozzetti, A, Stiepen, A, Strugarek, A, Taylor, J, Taylor, W, Terenzi, L, Tessenyi, M, Tsiaras, A, Tucker, C, Valencia, D, Vasisht, G, Vazan, A, Vilardell, F, Vinatier, S, Viti, S, Waters, R, Wawer, P, Wawrzaszek, A, Whitworth, A, Yung, YL, Yurchenko, SN, Osorio, MRZ, Zellem, R, Zingales, T, Zwart, F: A chemical survey of exoplanets with ARIEL. Exp. Astron. 46(1), 135–209 (2018). https://doi.org/10.1007/s10686-018-9598-x
Tremblin, P, Chabrier, G, Mayne, N J, Amundsen, D S, Baraffe, I, Debras, F, Drummond, B, Manners, J, Fromang, S: Advection of potential temperature in the atmosphere of irradiated exoplanets: a robust mechanism to explain radius inflation. ApJ 841(1), 30 (2017). https://doi.org/10.3847/1538-4357/aa6e57. arXiv:1704.05440
Trønnes, RG, Baron, M A, Eigenmann, K R, Guren, M G, Heyn, B H, Løken, A, Mohn, CE: Core formation, mantle differentiation and core-mantle interaction within Earth and the terrestrial planets. Tectonophysics 760, 165–198 (2019). https://doi.org/10.1016/j.tecto.2018.10.021
Tsiaras, A, Rocchetto, M, Waldmann, I P, Venot, O, Varley, R, Morello, G, Damiano, M, Tinetti, G, Barton, E J, Yurchenko, S N, Tennyson, J: Detection of an atmosphere around the super-Earth 55 Cancri e. ApJ 820(2), 99 (2016). https://doi.org/10.3847/0004-637X/820/2/99. arXiv:1511.08901
Tsiganis, K, Gomes, R, Morbidelli, A, Levison, H F: Origin of the orbital architecture of the giant planets of the Solar System. Nature 435(7041), 459–461 (2005). https://doi.org/10.1038/nature03539
Turrini, D, Miguel, Y, Zingales, T, Piccialli, A, Helled, R, Vazan, A, Oliva, F, Sindoni, G, Panić, O, Leconte, J, Min, M, Pirani, S, Selsis, F, Coudé du Foresto, V, Mura, A, Wolkenberg, P: The contribution of the ARIEL space mission to the study of planetary formation. Exp. Astron. 46(1), 45–65 (2018). https://doi.org/10.1007/s10686-017-9570-1. arXiv:1804.06179
Unterborn, C T, Panero, W R: The effects of mg/si on the exoplanetary refractory oxygen budget. Astrophys. J. 845(1), 61 (2017)
Unterborn, CT, Hull, SD, Stixrude, LP, Teske, JK, Johnson, JA, Panero, WR: Stellar chemical clues as to the rarity of exoplanetary tectonics. arXiv:170610282 (2017)
Valencia, D, Sasselov, D D, O’Connell, R J: Radius and structure models of the first super-Earth planet. ApJ 656(1), 545–551 (2007). https://doi.org/10.1086/509800. arXiv:astro-ph/0610122
Valencia, D, Guillot, T, Parmentier, V, Freedman, R S: Bulk composition of GJ 1214b and other sub-Neptune exoplanets. ApJ 775(1), 10 (2013). https://doi.org/10.1088/0004-637X/775/1/10. arXiv:1305.2629
Valletta, C, Helled, R: The distribution of heavy-elements in giant protoplanetary atmospheres: the importance of planetesimal-envelope interactions. arXiv:1811.10904 (2018)
Valletta, C, Helled, R: Giant planet formation models with a self-consistent treatment of the heavy elements. ApJ 900(2), 133 (2020). https://doi.org/10.3847/1538-4357/aba904. arXiv:2007.13577
van Summeren, J, Conrad, CP, Gaidos, E: Mantle convection, plate tectonics, and volcanism on hot exo-Earths. ApJl 736(1), L15 (2011). https://doi.org/10.1088/2041-8205/736/1/L15. arXiv:1106.4341
Vazan, A, Kovetz, A, Podolak, M, Helled, R: The effect of composition on the evolution of giant and intermediate-mass planets. MNRAS 434, 3283–3292 (2013). https://doi.org/10.1093/mnras/stt1248. arXiv:1307.2033
Vazan, A, Helled, R, Kovetz, A, Podolak, M: Convection and mixing in giant planet evolution. ApJ 803, 32 (2015). https://doi.org/10.1088/0004-637X/803/1/32. arXiv:1502.03270
Vazan, A, Helled, R, Podolak, M, Kovetz, A: The evolution and internal structure of Jupiter and Saturn with compositional gradients. ApJ 829, 118 (2016). https://doi.org/10.3847/0004-637X/829/2/118. arXiv:1606.01558
Vazan, A, Helled, R, Guillot, T: Jupiter’s evolution with primordial composition gradients. A&A 610, L14 (2018). https://doi.org/10.1051/0004-6361/201732522. arXiv:1801.08149
Vazan, A, Ormel, C W, Noack, L, Dominik, C: Contribution of the core to the thermal evolution of sub-Neptunes. ApJ 869(2), 163 (2018). https://doi.org/10.3847/1538-4357/aaef33. arXiv:1811.02588
Venturini, J, Helled, R: The formation of mini-Neptunes. ApJ 848(2), 95 (2017). https://doi.org/10.3847/1538-4357/aa8cd0. arXiv:1709.04736
Wahl, S M, Wilson, H F, Militzer, B: Solubility of iron in metallic hydrogen and stability of dense cores in giant planets. ApJ 773, 95 (2013). https://doi.org/10.1088/0004-637X/773/2/95. arXiv:1303.6743
Wahl, S M, Hubbard, W B, Militzer, B, Guillot, T, Miguel, Y, Movshovitz, N, Kaspi, Y, Helled, R, Reese, D, Galanti, E, Levin, S, Connerney, J E, Bolton, S J: Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44(10), 4649–4659 (2017). https://doi.org/10.1002/2017GL073160. arXiv:1707.01997
Wang, H.S., Lineweaver, C.H., Ireland, T.R.: The volatility trend of protosolar and terrestrial elemental abundances. Icarus 328, 287–305 (2019)
Williams, C.D., Mukhopadhyay, S.: Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565(7737), 78–81 (2019). https://doi.org/10.1038/s41586-018-0771-1
Wilson, H.F., Militzer, B.: Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. ApJ 745, 54 (2012). https://doi.org/10.1088/0004-637X/745/1/54
Wordsworth, R., Pierrehumbert, R.: Hydrogen-nitrogen greenhouse warming in earth’s early atmosphere. Science 339(6115), 64–67 (2013)
Wu, Y., Lithwick, Y.: Ohmic heating suspends, not reverses, the cooling contraction of hot Jupiters. ApJ 763 (1), 13 (2013). https://doi.org/10.1088/0004-637X/763/1/13. arXiv:1202.0026
Youdin, A.N., Mitchell, J.L.: The mechanical greenhouse: burial of heat by turbulence in hot Jupiter atmospheres. ApJ 721(2), 1113–1126 (2010). https://doi.org/10.1088/0004-637X/721/2/1113. arXiv:1008.0645
Zeng, L., Jacobsen, S.B., Sasselov, D.D., Petaev, M.I., Vanderburg, A., Lopez-Morales, M., Perez-Mercader, J., Mattsson, T.R., Li, G., Heising, M.Z., Bonomo, A.S., Damasso, M., Berger, T.A., Cao, H., Levi, A., Wordsworth, R.D.: Growth model interpretation of planet size distribution. Proc. Natl. Acad. Sci. 116(20), 9723–9728 (2019). https://doi.org/10.1073/pnas.1812905116. arXiv:1906.04253
Zilinskas, M., Miguel, Y., Mollière, P., Tsai, S.M.: Atmospheric compositions and observability of nitrogen-dominated ultra-short-period super-Earths. MNRAS 494(1), 1490–1506 (2020). https://doi.org/10.1093/mnras/staa724. arXiv:2003.05354