Are pterins able to modulate oxidative stress?

Theoretical Chemistry Accounts - Tập 127 - Trang 485-492 - 2010
Ana Martínez1, Andrés Barbosa2
1Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México City, Mexico
2Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain

Tóm tắt

Pterins (also known as pteridines) are common animal colorants that constitute heterocyclic compounds and have the highest nitrogen content of any pigment analyzed from animals. It has been reported that pterins modulate oxidative stress as these molecules are able to scavenge free radicals. Previous reports suggest three possible mechanisms that are responsible for scavenging free radicals; these are electron transfer (ET) reaction, hydrogen atom transfer (HAT) and radical addition. In this paper, the facility to scavenge free radicals (antiradical power) of pterins is analyzed, using density functional theory calculations and considering two possible mechanisms: ET and HAT. For the electron transfer process, considering the electron donor facility of the free radical scavenger molecules, vertical ionization energy of pterins indicates that the antiradical power of those pterins is lower than the antiradical power of any carotenoids (except for tetrahydrobiopterin). In terms of the HAT mechanism, the bond dissociation energy involved in the removal of one hydrogen atom from pterins is higher than for carotenoids (except for sepiapterin and 7,8-dihydrobiopterin). It can be expected that the most reactive molecules are those that have the smallest dissociation energy since the dissociation of the hydrogen atom is the first step of the reaction. This could indicate that some pterins are depicted as poorer antiradicals than carotenoids in terms of the HAT mechanism. Further studies focusing on the third mechanism (radical addition) and the kinetics of the reactions are necessary in order to fully understand the antiradical power of these substances. For this reason, work continues in order to clarify these aspects.

Tài liệu tham khảo

Hill GE, McGraw KJ (2006) Bird Coloration. Mechanisms and Measurements. Harvard University Press, Cambridge Massachusetts McGraw KJ (2005) Anim Behav 69:757–764 Oliphant LW (1987) Pigment Cell Res 1:129–131 Oliphant LW, Hudon J (1993) Pigment Cell Res 6:205–208 Grether GF, Hudon J, Endler JA (2001) Proc R Soc Lond Ser B 268:1245–1253 Oettl K, Reibnegger G (2002) Current Drug Metabolism 3:203–209 Burton GW, Ingold KU (1984) Science 224:569–573 Böhm F, Edge R, Land EJ, McGarvey DJ, Truscott TG (1997) J Am Chem Soc 119:621–622 Krinsky NI, Yeum KJ (2003) Biochemical and Biophysical Communications 305:754–760 Galano A (2007) J Phys Chem B 111:12898–12908 Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037–9042 Martínez A, Vargas R, Galano A (2009) J Phys Chem B 113:12113–12120 Galano A, Vargas R, Martínez A (2010) PCCP 12:193–200 Martínez A, Barbosa A (2008) J Phys Chem B 112:16945–16951 Wang L-F, Zhang H-Y (2003) Bioorg Med Chem Lett 13:3789–3792 Li M-J, Liu L, Fu Y, Guo Q-X (2007) J Mol Struct (THEOCHEM) 815:1–9 Chen X, Xu X, Cao Z (2007) J Phys Chem A 111:9255–9262 Gready JE (1984) J Mol Struct (THEOCHEM) 109:231–244 Gready JE (1985) J Mol Struct (THEOCHEM) 124:1–8 Wormell P, Gready JE (1994) Chem Phys 179:55–69 Dántola ML, Thomas AH, Braun AM, Oliveros E, Lorente C (2007) J Phys Chem A 111:4280–4288 Testani JM, Dabelic R, Rasche ME (2006) Anal Biochem 358:20–24 Lorente C, Tomas AH (2006) Acc Chem Res 39:395–402 Petroselli G, Dántola ML, Cabrerizo FM, Capparelli AL, Lorente C, Oliveros E, Thomas AH (2008) J Am Chem Soc 130:3001–3011 Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, MillamJM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CT Becke AD (1988) Phys Rev A 38:3098–3100 Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249 Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539 Tunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern and Theoretical Chemistry, 3rd edn. Plenum, New York, NY, pp 1–28 Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654 McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648 Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comp Chem 4:294–301 Cances MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041 Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158 Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506–10517 Tomasi J, Mennucci B, Cancès E (1999) J Mol Str (THEOCHEM) 464:211–226