Are liana communities in linear canopy openings subject to edge effects?

Beatriz Castro Miranda1, Jerônimo Boelsums Barreto Sansevero2, Thiago de Azevedo Amorim2, Pablo José Francisco Pena Rodrigues1, Marcelo Trindade Nascimento3, João Marcelo Alvarenga Braga1
1Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
2Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
3Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil

Tóm tắt

Studies have revealed a significant increase in liana abundance due to intense fragmentation and consequent edge effects in tropical forests. This study evaluated whether liana communities adjacent to linear canopy openings experience edge effects in the Brazilian Atlantic Forest. For vegetation sampling, 12 sampling units (20 × 50 m) were distributed among forest fragments with four sampling units in each of three treatments: old-growth forest, power line edge (40 years old and 100 m wide), and gas pipeline edge (20 years old and 25 m wide). All lianas with Diameter at Ground Height (DGH) ≥ 2.5 cm were measured. Subplots (20 × 20 m) were also allocated to measure individuals with DGH between 0.5 and 2.49 cm. Edge effects were determined using the parameters: abundance, basal area, species richness, and species composition. Edge and interior lianas were similar for all measured parameters for both diameters classes. There was a higher rate of infestation by lianas in larger trees both on the edges and interior. These linear openings resulted in only few alterations to liana community dynamics along edges, indicating that fragmentation from linear openings may result in a softer edge effect or that edge effects may even attenuate over time due to linear openings. Finally, liana infestation on larger trees suggests that tree structure plays an important role in structural patterns of liana communities.

Từ khóa


Tài liệu tham khảo

Addo-Fordjour P, Rahmad ZB, Burnham RJ (2016) Intercontinental comparison of liana community assemblages in tropical forests of Ghana and Malaysia. J Plant Ecol 10:883–894. https://doi.org/10.1093/jpe/rtw082 Addo-fordjour P, Owusu-boadi K (2016) Linear edge effects on liana and tree communities in two tropical forest ecosystems in Ghana. Ecol Res 31:709–718. https://doi.org/10.1007/s11284-016-1382-7 Alves LF, Assis MA, van Melis J, Barros ALS, Vieira SA, Martins FR, Martinelli LA, Joly CA (2011) Variation in liana abundance and biomass along an elevational gradient in the Tropical Atlantic Forest (Brazil). Ecol Res 27:323–332. https://doi.org/10.1007/s11284-011-0902-8 Amorim TA, Moraes JCR, Couto AVS, Pereira GHA, Pereira MG, Nunes-Freitas AF (2020) Relações biométricas entre árvores e lianas: como o tamanho das árvores está relacionado à sua propensão à infestação por lianas e ao tamanho das lianas? In: Parque do Curió, pp 309–325 Arroyo-Rodríguez V, Asensio N, Dunn JC, Cristóbal-Azkarate J, Gonzalez-Zamora A (2015) Use of lianas by primates: more than a food source. Ecol Lianas. https://doi.org/10.1002/9781118392409.ch27 Arroyo-Rodriguez V, Toledo-Aceves T (2009) Impact of landscape spatial pattern on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl Veg Sci 12:340–349. https://doi.org/10.1111/j.1654-109X.2009.01030.x Bongers F, Ewango CEN, van der Sande MT, Poorter L (2020) Liana species decline in Congo basin contrasts with global patterns. Ecology 101:1–10. https://doi.org/10.1002/ecy.3004 Bruy D, Ibanez T, Munzinger J, Isnard S (2018) Abundance, richness and composition of lianas in forest communities along an elevation gradient in New Caledonia. Plant Ecol Divers 10:469–481. https://doi.org/10.1080/17550874.2018.1430186 Campbell MJ, Edwards W, Magrach A, Alamgir M, Porolak G, William DM (2018) Edge disturbance drives liana abundance increase and alteration of liana – host tree interactions in tropical forest fragments. Ecol Evol 8:4237–4251. https://doi.org/10.1002/ece3.3959 Campbell M, Laurance WF, Magrach A (2015) Ecological effects of lianas in fragmented forests. In: Ecology of lianas, 1 ed, Wiley Blackwell, pp 443–450 Ceballos SJ, Malizia A (2017) Liana density declined and basal area increased over 12 y in a subtropical montane forest in Argentina. J Trop Ecol 33:241–248. https://doi.org/10.1017/S0266467417000153 da Vargas B, C, Araújo GM, (2014) Florística de trepadeiras em fragmentos de florestas semideciduais em Uberlândia, Minas Gerais, Brasil. Rodriguésia 65:49–59. https://doi.org/10.1590/S2175-78602014000100004 do Couto-Santos APL, Conceição AA, Funch LS, (2015) The role of temporal scale in linear edge effects on a submontane Atlantic forest arboreal community. Acta Bot Brasilica 29:190–197. https://doi.org/10.1590/0102-33062014abb3732 Durigon J, Miotto STS, Gianoli E (2014) Distribution and traits of climbing plants in subtropical and temperate South America. J Veg Sci. https://doi.org/10.1111/jvs.12197 Eisenlohr PV, de Melo MMF, Nascimento MT, dos Santos AC, Rodrigues PJFP (2015) Estrutura de comunidades vegetais em áreas suscetíveis a efeitos de borda: conceitos, métodos e estudos de caso. In: Fitossociologia no Brasil: Métodos e estudos de casos, 2 ed. UFV, pp 119–138 Engel VL, Fonseca R, de Oliveira R (1998) Ecologia de lianas e o manejo de fragmentos florestais. Série Técnica IPEF 12:43–64. https://www.ipef.br/publicacoes/stecnica/nr32/cap04.pdf. Accessed September 14, 2021 Fox J, Weisberg S (2019) An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ Gentry AH (1991) Breeding and dispersal systems of lianas. In: The biology of vines. Cambridge University Press, pp 393–423 Gerolamo CS, Nogueira A, Costa FRC, de Castilho CV, Angyalossy V (2018) Local dynamic variation of lianas along topography maintains unchanging abundance at the landscape scale in central Amazonia. J Veg Sci 29:651–661. https://doi.org/10.1111/jvs.12644 Harper KA, Macdonald E, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P-A (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782. https://doi.org/10.1111/j.1523-1739.2005.00045.x ICMbio (2008a) Plano de manejo Reserva Biológica União. Encarte 1: Contextualização da Unidade de Conservação. http://www.icmbio.gov.br/portal/images/stories/imgsunidadescoservacao/ENCARTE%201-rebio.pdf. Accessed June 23, 2021 ICMBio (2008b) Plano de manejo Reserva Biológica União. Encarte 3: Análise da Unidade de Conservação. https://www.icmbio.gov.br/portal/images/stories/imgs-unidades-coservacao/ENCARTE%203_rebio.pdf. Accessed June 23, 2021 Jones IL, Peres CA, Benchimol M, Bunnefeld L, Dent DH (2017) Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape. PLoS ONE 12:1–19. https://doi.org/10.1371/journal.pone.0185527 Laurance WF, Goosem M (2008) Impacts of Habitat Fragmentation and Linear Clearings on Australian Rainforest Biota. Living a Dyn Trop for Landsc. https://doi.org/10.1002/9781444300321.ch23 Laurance WF, Pérez-Salicrup D, Delamônica P, Fearnside PM, D’angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of amazian liana communities. Ecology 82:105–116. https://doi.org/10.1890/0012-9658(2001)082[0105:RFFATS]2.0.CO;2 Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669. https://doi.org/10.1016/j.tree.2009.06.009 Laurance WF, Andrade AS, Magrach A, Camargo JLC, Valsko JJ, Campbell M, Fearnside PM, Edwards W, Lovejoy TE, Laurance SG (2014) Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology 95:1604–1611. https://doi.org/10.1890/13-1571.1 Laurentino TG, Baur J, Usui T, Eichhorn MP (2019) Liana abundance and relationships to sapling and tree hosts in an East African primary forest. Afr J Ecol 57:130–136. https://doi.org/10.1111/aje.12584 Ledo A, Illian JB, Schnitzer SA, Wright SJ, Dalling JW, Burslem DFRP (2016) Lianas and soil nutrients predict fine-scale distribution of above-ground biomass in a tropical moist forest. J Ecol 104:1819–1828. https://doi.org/10.1111/1365-2745.12635 Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. https://doi.org/10.1007/s004420100716 Letcher SG (2015) Patterns of liana succession in tropical forests. In: Ecology of Lianas. pp 116–130 Magrach A, Rodr J, Campbell M, Laurance WF (2014) Edge effects shape the spatial distribution of lianas and epiphytic ferns in Australian tropical rain forest fragments. Appl Veg Sci. https://doi.org/10.1111/avsc.12104 Matlack GR (1994) Vegetation dynamics of the forest edge - trends in space and successional time. J Ecol 82:113–123. https://doi.org/10.2307/2261391 Mohandass D, Campbell MJ, Hughes AC, Mammides C, Davidar P (2017) The effect of altitude, patch size and disturbance on species richness and density of lianas in montane forest patches. Acta Oecologica 83:1–14. https://doi.org/10.1016/j.actao.2017.06.004 Muller-Landau HC, Visser MD (2018) How do lianas and vines influence competitive differences and niche differences among tree species? Concepts and a case study in a tropical forest. J Ecol 107:1469–1481. https://doi.org/10.1111/1365-2745.13119 Ofosu-bamfo B, Addo-fordjour P, Belford EJD (2019) Acta Oecologica Does road-edge affects liana community structure and liana-host interactions in evergreen rainforests in Ghana ? Acta Oecol 101:103476. https://doi.org/10.1016/j.actao.2019.103476 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan Parthasarathy N, Vivek P, Muthumperumal C, Muthuramkumar S, Ayyappan N (2015) Biodiversity of Lianas and Their Functional Traits in Tropical Forests of Peninsular India. In: Biodiversity of Lianas, 5th ed. Springer, pp 123–148 Phillips OL, Vésquez Martínez R, Arroyo L, Baker TR, Killeen T, Lewis SL, Malhi Y, Monteagudo Mendoza A, Neill D, Núñez Vargas P, Alexiades M, Cerón C, Di Flore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774. https://doi.org/10.1038/nature00926 Pohlman CL, Turton SM, Goosem M (2007) Edge effects of linear canopy openings on Tropical Rain Forest understory microclimate. Biotropica 39:62–71. https://doi.org/10.1111/j.1744-7429.2006.00238.x Poulsen JR, Koerner SE, Miao Z, Medjibe VP, Banak LN, White LJT (2016) Forest structure determines the abundance and distribution of large lianas in Gabon. Glob Ecol Biogeogr 26:472–485. https://doi.org/10.1111/geb.12554 Prieto PV, Sansevero JBB, Garbin ML, Braga JMA, Rodrigues PJFP (2014) Edge effects of linear canopy openings on understorey communities in a lowland Atlantic tropical forest. Appl Veg Sci 17:121–128. https://doi.org/10.1111/avsc.12043 Putz FE (1984a) The natural history of lianas on barro Colorado Island, Panama. Ecology 65:1713–1724. https://doi.org/10.2307/1937767 Putz FE (1984b) How trees avoid and shed lianas. Biotropica 16:19–23. https://doi.org/10.2307/2387889 Putz FE, Chai P (1987) Ecological studies of lianas in Lambir National Park, Sarawak. Malaysia J Ecol 75:523. https://doi.org/10.2307/2260431 R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in https://www.R-project.org/ Rice K, Brokaw N, Thompson J (2004) Liana abundance in a Puerto Rican forest. For Ecol Manage 190:33–41. https://doi.org/10.1016/j.foreco.2003.10.004 Rodrigues PJ, Nascimento MT (2006) Fragmentação florestal: breves considerações teóricas sobre efeitos de borda. Rodriguésia 57:63–74. https://doi.org/10.1590/2175-7860200657105 Rodrigues PJFP (2004) A vegetação da Reserva Biológica União e os efeitos de borda na Mata Atlântica fragmentada. Doctoral thesis, Universidade Estadual do Norte Fluminense Darcy Ribeiro Schnitzer SA (2018) Tansley review Testing ecological theory with lianas. New Phytol 220:366–380. https://doi.org/10.1111/nph.15431 Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecol Lett 14:397–406. https://doi.org/10.1111/j.1461-0248.2011.01590.x Schnitzer SA, van der Heijden GMF (2019) Lianas have a seasonal growth advantage over co-occurring trees. Ecology 100:1–12. https://doi.org/10.1002/ecy.2655 Schnitzer SA, Michel NL, Powers JS, Robinson WD (2020) Lianas maintain insectivorous bird abundance and diversity in a neotropical forest. Ecology. https://doi.org/10.1002/ecy.3176 Schnitzer, S. A. 2015. The Contribution of Lianas to Forest Ecology, Diversity, and Dynamics. In: Biodiversity of Lianas, 5 ed. Springer, pp 149–160 Sfair JC, Rochelle ALC, Rezende AA, Van Melis J, Burnham RJ, de Weiser V, L, Martins FR, (2016) Liana avoidance strategies in trees: Combined attributes increase efficiency. Trop Ecol 57:559–566 Umaña MN, Forero-Montaña J, Nytch CJ, Thompson J, Uriarte M, Zimmerman J, Swenson NG (2019) Dry conditions and disturbance promote liana seedling survival and abundance. Ecology 100:1–9. https://doi.org/10.1002/ecy.2556 Van der H, Geertje MF, Healey JR, Phillips OL (2008) Infestation of trees by lianas in a tropical forest in Amazonian Peru. J Veg Sci 19:747–756. https://doi.org/10.3170/2008-8-18459 Yang S, Fan H, Li K (2018) How the diversity, abundance, size and climbing mechanisms of woody lianas are related to biotic and abiotic factors in a subtropical secondary forest. Taiwan Folia Geobot 53:77–88. https://doi.org/10.1007/s12224-017-9306-z