Are lead-free piezoelectrics more environmentally friendly?

Taofeeq Ibn‐Mohammed1, S.C. Lenny Koh2, Ian M. Reaney3, Derek C. Sinclair3, K.B. Mustapha4, Adolf Acquaye5, D. Wang3
1Centre for Energy, Environment and Sustainability, The University of Sheffield, Sheffield, UK
2Advanced Resource Efficiency Centre, The University of Sheffield, Sheffield, UK
3Departments of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
4Departments of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Malaysia Campus, Selangor Darul Ehsan, Malaysia
5Kent Business School, University of Kent, Canterbury, UK

Tóm tắt

AbstractConsidered as a less hazardous piezoelectric material, potassium sodium niobate (KNN) has been in the fore of the search for replacement of lead (Pb) zirconate titanate for piezoelectrics applications. Here, we challenge the environmental credentials of KNN due to the presence of ~60 wt% Nb2O5, a substance much less toxic to humans than Pb oxide, but whose mining and extraction cause significant environmental damage.

Từ khóa


Tài liệu tham khảo

J. Koruza, B. Rožic, G. Cordoyiannis, B. Malic, and Z. Kutnjak: Large elec-trocaloric effect in lead-free K0.5Na0.5NbO3–SrTiO3 ceramics. Appl. Phys. Lett. 106, 202905 (2015).

H. Zhang, C. Chen, X. Zhao, H. Deng, B. Ren, X. Li, H. Luo, and S. Li: Structure and electrical properties of Na1/2Bi1/2TiO3–xK1/2Bi1/2TiO3 lead-free ferroelectric single crystals. Solid State Commun. 201, 125 (2015).

T. Lusiola, F. Bortolani, Q. Zhang, and R. Dorey: Molten hydroxide synthesis as an alternative to molten salt synthesis for producing K0.5Na0.5NbO3 lead free ceramics. J. Mater. Sci. 47, 1938 (2012).

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84 (2004).

A. Nourmohammadi, M. Bahrevar, S. Schulze, and M. Hietschold: Electrodeposition of lead zirconate titanate nanotubes. J. Mater. Sci. 43, 4753 (2008).

C. He, X. Li, Z. Wang, Y. Liu, D. Shen, T. Li, X. Long, and Z.-G. Ye: Growth of Pb (Fe1/2Nb1/2) O3–Pb (Yb1/2Nb1/2) O3–PbTiO3 piezo-/ferroelectric crystals for high power and high temperature applications. CrystEngComm 14, 4407 (2012).

F. Cucchiella, I. D’Adamo, S.L. Koh, and P. Rosa: Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 51, 263 (2015).

S. Koh, T. Ibn-Mohammed, A. Acquaye, K. Feng, I. Reaney, K. Hubacek, H. Fujii, and K. Khatab: Drivers of US toxicological footprints trajectory 1998–2013. Sci. Rep. 6, 39514 (2016).

M. Kutz: Mechanical Engineers’ Handbook, Materials and Engineering Mechanics (John Wiley & Sons, West Sussex, England, 2015).

T. Ibn-Mohammed, S. Koh, I. Reaney, A. Acquaye, D. Wang, S. Taylor, and A. Genovese: Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate tita-nate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495 (2016).

P. Curie and J. Curie: Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. C. R. Acad. Sci. 91, 294 (1880).

R. Jaeger and L Egerton: Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209 (1962).

W. Heywang, K. Lubitz, and W. Wersing: Piezoelectricity: Evolution and Future of a Technology (Springer Science & Business Media, Berlin/Heidelberg, 2008).

W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel: Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J. Electroceram. 29, 71 (2012).

J. Rödel, W. Jo, KT. Seifert, E.M. Anton, T. Granzow, and D. Damjanovic: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).

H. Ledbetter, H. Ogi, and N. Nakamura: Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate. Mech. Mater. 36, 941 (2004).

T. Karaki, M. Adachi, and K. Yan: High-performance lead-free barium tita-nate piezoelectric ceramics. In Advances in Science and Technology Vol. 54, edited by P. Vincenzini and G. D’arrigo (Trans Tech Publ, Zurich, Switzerland, 2008), pp. 7–12.

H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa: Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Japan. J. Appl. Phys. 45, L30 (2006).

K.-I. Kakimoto, T. Yoshifuji, and H. Ohsato: Densification of tungsten-bronze KBa2Nb5O15 lead-free piezoceramics. J. Eur. Ceram. Soc. 27, 4111 (2007).

P. Panda and B. Sahoo: PZT to lead free piezo ceramics: a review. Ferroelectrics 474, 128 (2015).

J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao: (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).

S. Xu and J.F. Li: Synthesis and piezoelectricity of single-crystalline (K, Na) NbO3 nanobars. J. Am. Ceram. Soc. 94, 3812 (2011).

L.-Q. Cheng, K. Wang, and J.-F. Li: Synthesis of highly piezoelectric lead-free (K, Na) NbO3 one-dimensional perovskite nanostructures. Chem. Commun. 49, 4003 (2013).

H. Ge, Y. Hou, M. Zhu, H. Wang, and H. Yan: Facile synthesis and high d 33 of single-crystalline KNbO3 nanocubes. Chem. Commun. 41, 5137 (2008).

T. Ibn-Mohammed, R. Greenough, S. Taylor, L. Ozawa-Meida, and A. Acquaye: Operational vs. embodied emissions in buildings—a review of current trends. Energy Build. 66, 232 (2013).

S. Hellweg and L. Milà i Canals: Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109 (2014).

T. Ibn-Mohammed, R. Greenough, S. Taylor, L. Ozawa-Meida, and A. Acquaye: Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options. Build. Environ. 72, 82 (2014).

R. Linnen, D.L. Trueman, and R. Burt: Tantalum and niobium. In Critical Metals Handbook, edited by G. Gunn (John Wiley & Sons, Oxford, 2014), ch. 15.

D.A. Mackay and G.J. Simandl: Geology, market and supply chain of niobium and tantalum—a review. Mineral. Deposit. 49, 1025 (2014).

British Geological Survey: Niobium-Tantalum: definition, mineralogy and deposits (2015). Available from: http://nora.nerc.ac.uk/14327/1/ comm_profile_niobium_tantalum%5B1%5D.pdf (accessed November 20, 2016).

Globe Metals & Mining: Environmental scoping report and terms reference for environmental impact assessment (2011). Available from: http://www.globemetalsandmining.com.au/Files/Projects/Kanyika/ Environmental-Scoping-Report.aspx (accessed November 20, 2016).

Globe Metals & Mining: Environmental impact assessment report for the Kanyika niobium project (2012). Available from: http://www.globemetal-sandmining.com.au/Files/Projects/Kanyika/enironmental-reports/S0522-KANYIKA-PROJECT-EIA-REPORT-FINAL_REVISION_01.aspx (accessed November 20, 2016).

M.D. Maeder, D. Damjanovic, and N. Setter: Lead free piezoelectric materials. J. Electroceram. 13, 385 (2004).

D. Barltrop and A.M. Smith: Kinetics of lead interaction with human erythrocytes. Postgrad. Med. J. 51, 770 (1975).

A. Babayigit, A. Ethirajan, M. Muller, and B. Conings: Toxicity of organo-metal halide perovskite solar cells. Nat. Mater. 15, 247 (2016).

S.H. Lee, C.K. Jeong, G.-T. Hwang, and K.J. Lee: Self-powered flexible inorganic electronic system. Nano Energy 14, 111 (2015).