Archaean crustal growth through successive partial melting events in an oceanic plateau‐like setting in the Tanzania Craton

Terra Nova - Tập 30 Số 3 - Trang 169-178 - 2018
Ioan V. Sanislav1, Thomas G. Blenkinsop2, Paul H.G.M. Dirks1
1Geoscience, James Cook University, Townsville, QLD, Australia
2School of Earth & Ocean Sciences Cardiff University Cardiff UK

Tóm tắt

AbstractThe detrital zircon population in quartzitic conglomerates from the northern Tanzania Craton yield ages between 2640 Ma and 2790 Ma which includes most of the igneous history from this part of the craton. The igneous evolution is characterised by mafic volcanism with an oceanic plateau‐like geochemical signature at ~2800 Ma followed by diorite and tonalite–trondhjemite–granodiorite dominated magmatism between 2790 and 2700 Ma, which transitioned into more evolved high‐K magmatism between 2700 and 2620 Ma. The εHf values of the detrital zircons range from +2.4 to −1.4 and change with time from radiogenic Hf pre‐2700 Ma (98% positive εHf) to unradiogenic Hf post‐2700 Ma (41% positive εHf). The petrological progression from mafic to felsic crust is reflected in the detrital age distribution and Hf isotopes and is consistent with juvenile mafic crust slowly maturing into more evolved felsic crust through a series of successive partial melting events in an oceanic‐plateau‐like environment.

Từ khóa


Tài liệu tham khảo

10.1016/j.gca.2005.11.008

10.1016/j.precamres.2012.04.001

Borg G., 1994, The Geita gold deposit in NW Tanzania – geology, ore petrology, geochemistry and timing of events, Geologisches Jahrbuch, 100, 545

10.1016/S0899-5362(99)00099-8

Borg G., 1997, Greenstone Belts, 608

10.2475/ajs.303.4.319

10.1130/G32945.1

10.1029/2002GC000333

10.1016/j.gsf.2015.11.008

10.1038/ngeo2466

10.1130/0091-7613(1980)8<82:PSAPOS>2.0.CO;2

10.1146/annurev-earth-060614-105049

10.1029/97JB00788

10.1038/nature00799

10.1016/j.gr.2012.11.008

10.1029/1999TC001152

10.1016/S0301-9268(98)00042-4

10.1016/j.lithos.2010.12.007

10.1130/G38226.1

Hofmann A. W, 2004, The Mantle and Core, 61

10.1016/0012-821X(86)90038-5

10.1130/0091-7613(1999)027<0031:SACOTA>2.3.CO;2

10.1146/annurev-earth-042711-105255

Ingersoll R. V., 1995, Tectonics of Sedimentary Basins, 1

10.1144/GSL.SP.2002.199.01.10

10.1016/j.oregeorev.2012.02.009

10.1016/j.precamres.2012.06.020

10.1016/j.precamres.2014.12.007

Kwelwa S. D., 2017, The petrogenesis of the Neoarchean Kukuluma Intrusive Complex, NW Tanzania, Precambrian research

Kwelwa S. D., 2017, Zircon U‐Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization, Journal of African Earth Sciences

10.1144/GSL.SP.2003.219.01.01

Maboko M. A. H., 2006, The origin of late Archaean granitoids in the Sukumaland greenstone belt of northern Tanzania: Geochemical and isotopic constraints, Tanzania Journal of Science, 32, 75

10.1016/j.jafrearsci.2004.12.006

10.1016/j.jafrearsci.2006.03.004

10.1016/S0301-9268(02)00195-X

10.1016/j.jafrearsci.2008.06.003

10.1016/j.lithos.2004.04.048

10.1130/G31219.1

10.1130/G322894.1

10.1144/SP389.5

10.1016/j.lithos.2007.06.016

10.1038/362739a0

10.1038/nature13728

10.1130/G31159.1

Ryt M., 2017, Alteration paragenesis and the timing of mineralised quartz veins at the world‐class Geita Hill gold deposit, Geita Greenstone Belt, Tanzania, Ore Geology Reviews

10.1007/s00126-016-0660-1

10.1016/j.oregeorev.2015.02.002

10.1016/j.precamres.2013.12.026

10.1016/S0301-9268(03)00182-7

10.1130/G21557.1

10.1029/2001RG000108

10.1130/G21365.1

10.1144/SP338.2

10.1144/GSL.SP.1989.042.01.19

10.1126/science.aad5513

10.1029/JB094iB04p04697

10.1016/S0031-9201(01)00229-1

10.2475/10.2010.01

10.1016/j.precamres.2003.12.015

10.1111/j.1365-3121.2006.00723.x

10.1016/S0016-7037(98)00274-9

10.1016/j.tecto.2013.07.025

10.1016/S0301-9268(98)00043-6

10.1038/ngeo2521

10.1130/0091-7613(2001)029<1083:MACFBC>2.0.CO;2