Arbuscular mycorrhizal fungus richness in the soil and root colonization in vineyards of different ages
Tài liệu tham khảo
Ambrosini, 2015, Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil, Braz. J. Microbiol., 46, 1045, 10.1590/S1517-838246420140622
Andersen, 1987, The influence of low soil temperature on the growth of vesicular–arbuscular mycorrhizal Fraxinus pennsylvanica, Can. J. For. Res., 17, 951, 10.1139/x87-148
Anderson, 2017, Permutational multivariate analysis of variance (PERMANOVA), 1
Arias, 2004, Copper distribution and dynamics in acid vineyard soils treated with copper-based fungicides, Soil Sci., 169, 796, 10.1097/01.ss.0000148739.82992.59
Ávila, 2007, Ocorrência de fungos micorrízicos arbusculares em cultivos de videira (Vitis sp.) sob diferentes tipos de manejo. Presented at the II Congresso Brasileiro de agroecologia, Rev. Bras. Agroecologia, 2, 641
Avio, 2006, Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks, New Phytol., 172, 347, 10.1111/j.1469-8137.2006.01839.x
Balestrini, 2010, Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop: cohorts of AM fungi in vineyards, Environ. Microbiol. Rep., 2, 594, 10.1111/j.1758-2229.2010.00160.x
Betancur-Agudelo, 2020, Growth, heavy metal uptake, and photosynthesis in “Paulsen 1103” (Vitis berlandieri x rupestris) grapevine rootstocks inoculated with arbuscular mycorrhizal fungi from vineyard soils with high copper contents, VITIS - J. Grapevine Res., 169
Bethlenfalvay, 1994, Mycorrhizae in sustainable agriculture. I. Effects on seed yield and soil aggregation, Am. J. Alternative Agric., 9, 157, 10.1017/S0889189300005919
Bettoni, 2016, Colonização micorrízica de videiras cultivadas em sistemas orgânico e convencional no estado de Santa Catarina, Agropecu. Catarin., 29, 41
Bokulich, 2014, PNAS Plus: from the Cover: microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate, Proc. Natl. Acad. Sci. Unit. States Am., 111, E139, 10.1073/pnas.1317377110
Bouffaud, 2016, Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy vineyards, OENO One, 50, 1, 10.20870/oeno-one.2016.50.1.49
Bradley, 1981, Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris, Nature, 292, 335, 10.1038/292335a0
Braunberger, 1991, Effect of phosphorus nutrition on morphological characteristics of vesicular-arbuscular mycorrhizal colonization of maize, New Phytol., 119, 107, 10.1111/j.1469-8137.1991.tb01013.x
Brun, 2001, Evaluation of copper availability to plants in copper-contaminated vineyard soils, Environ. Pollut., 111, 293, 10.1016/S0269-7491(00)00067-1
Brundrett, 1999, Glomalean mycorrhizal fungi from tropical Australia, Mycorrhiza, 8, 305, 10.1007/s005720050251
Cabral, 2015, Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications, World J. Microbiol. Biotechnol., 31, 1655, 10.1007/s11274-015-1918-y
Chagnon, 2013, A trait-based framework to understand life history of mycorrhizal fungi, Trends Plant Sci., 18, 484, 10.1016/j.tplants.2013.05.001
Chaignon, 2009, Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil, Environ. Pollut., 157, 3363, 10.1016/j.envpol.2009.06.032
Chapin, 1980, The mineral nutrition of wild plants, Annu. Rev. Ecol. Systemat., 11, 233, 10.1146/annurev.es.11.110180.001313
Christie, 2004, Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc, Plant Soil, 261, 209, 10.1023/B:PLSO.0000035542.79345.1b
Claessen, 1997, Manual de métodos de análise de solo
Clark, 2000, Mineral acquisition by arbuscular mycorrhizal plants, J. Plant Nutr., 23, 867, 10.1080/01904160009382068
Doehlemann, 2014, Reprogramming of plant cells by filamentous plant-colonizing microbes, New Phytol., 204, 803, 10.1111/nph.12938
Douds, 1990, Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents, New Phytol., 116, 621, 10.1111/j.1469-8137.1990.tb00547.x
Gavito, 1995, Response of “criollo” maize to single and mixed species inocula of arbuscular mycorrhizal fungi, Plant Soil, 176, 101, 10.1007/BF00017680
Gerdemann, 1963, Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Trans. Br. Mycol. Soc., 46, 235, 10.1016/S0007-1536(63)80079-0
Girotto, 2013, Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry, Ecotoxicol. Environ. Saf., 93, 145, 10.1016/j.ecoenv.2013.03.021
Gollotte, 2004, Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment, Mycorrhiza, 14, 111, 10.1007/s00572-003-0244-7
Gonzalez-Chavez, 2002, Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil, Plant Soil, 240, 287, 10.1023/A:1015794622592
González-Guerrero, 2009, Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas, 107
González-Guerrero, 2008, Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices, Can. J. Microbiol., 54, 103, 10.1139/W07-119
Gower, 1967, Multivariate analysis and multidimensional geometry, The Statistician, 17, 13, 10.2307/2987199
Hart, 2002, Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi, New Phytol., 153, 335, 10.1046/j.0028-646X.2001.00312.x
Hart, 2002, Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF?, Mycorrhiza, 12, 297, 10.1007/s00572-002-0186-5
Hoagland, 1950, The water-culture method for growing plants without soil, Circ. California Agric. Exp. Stat., 347, 32
Holland, 2014, Arbuscular mycorrhizal fungal communities associated with Vitis vinifera vines under different frequencies of irrigation, Am. J. Enol. Vitic., 65, 222, 10.5344/ajev.2014.13101
Holland, 2014, How distinct are arbuscular mycorrhizal fungal communities associating with grapevines, Biol. Fertil. Soils, 50, 667, 10.1007/s00374-013-0887-2
Jackson, 1989, Similarity coefficients: measures of Co-occurrence and association or simply measures of occurrence, Am. Nat., 133, 436, 10.1086/284927
Jasper, 1989, Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining, Plant Soil, 115, 99, 10.1007/BF02220699
Jensen, 1980, The occrrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments, Plant Soil, 55, 403, 10.1007/BF02182701
Jermini, 2010, Quantitative effect of leaf damage caused by downy mildew (Plasmopara viticola) on growth and yield quality of grapevine “Merlot” (Vitis vinifera), Vitis: J. Grapevine Res., 49, 77
Joner, 2000, Metal-binding capacity of arbuscular mycorrhizal mycelium, Plant Soil, 226, 227, 10.1023/A:1026565701391
Kahiluoto, 2001, Promotion of AM utilization through reduced P fertilization 2. Field studies, Plant Soil, 231, 65, 10.1023/A:1010366400009
Karagiannidis, 2000, Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of in Vitis vinifera L. (cv. Razaki), Am. J. Enol. Vitic., 51, 269, 10.5344/ajev.2000.51.3.269
Komárek, 2010, Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects, Environ. Int., 36, 138, 10.1016/j.envint.2009.10.005
Koske, 1989, A modified procedure for staining roots to detect VA mycorrhizas, Mycol. Res., 92, 486, 10.1016/S0953-7562(89)80195-9
Leao, 2004
Legendre, 1999, Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments, Ecol. Monogr., 69, 1, 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2
Linderman, 2001, Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi, Am. J. Enol. Vitic., 52, 8, 10.5344/ajev.2001.52.1.8
Lumini, 2010, Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach, Environ. Microbiol., 10.1111/j.1462-2920.2009.02099.x
Mcgonigle, 1990, A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi, New Phytol., 115, 495, 10.1111/j.1469-8137.1990.tb00476.x
Mickan, 2017, Molecular divergence of fungal communities in soil, roots and hyphae highlight the importance of sampling strategies, Rhizosphere, 4, 104, 10.1016/j.rhisph.2017.09.003
Morton, 1986, Three new species of acaulospora (endogonaceae) from high aluminum, low ph soils in West Virginia, Mycologia, 78, 641, 10.1080/00275514.1986.12025300
Munkvold, 2004, High functional diversity within species of arbuscular mycorrhizal fungi, New Phytol., 164, 357, 10.1111/j.1469-8137.2004.01169.x
Murphy, 1962, A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 27, 31, 10.1016/S0003-2670(00)88444-5
Nogueirol, 2005, Biodisponíveis de cobre em perfis de seis solos cultivados com vinhedos no Rio Grande do Sul
Oehl, 2018, Diversity of arbuscular mycorrhizal fungi in no-till and conventionally tilled vineyards, J. Appl. Bot. Food Qual., 56
Oehl, 2010, Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities, Soil Biol. Biochem., 42, 724, 10.1016/j.soilbio.2010.01.006
Oehl, 2017, Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils, Biol. Fertil. Soils, 53, 777, 10.1007/s00374-017-1217-x
Oehl, 2011, Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps, Pedobiologia, 54, 321, 10.1016/j.pedobi.2011.07.006
Oehl, 2004, Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems, New Phytol., 165, 273, 10.1111/j.1469-8137.2004.01235.x
Oehl, 2006, Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps, Mycologia, 98, 286, 10.1080/15572536.2006.11832701
Oksanen, 2013, Package ‘vegan, R Packag, 254, 8
Parat, 2002, The relationship between copper accumulated in vineyard calcareous soils and soil organic matter and iron, Eur. J. Soil Sci., 53, 663, 10.1046/j.1365-2389.2002.00478.x
Richards, 2011, The grape root system, 127
Ryan, 1999, Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertilizer histories (conventional and biodynamic), Agric. Ecosyst. Environ., 73, 51, 10.1016/S0167-8809(99)00014-6
Ryan, 2003, Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield, Plant Soil, 250, 225, 10.1023/A:1022839930134
Santos, 2018
Schreiner, 2005, Mycorrhizas and mineral acquisition in grapevines
Schreiner, 2005, Mycorrhizal colonization in dryland vineyards of the willamette valley, Oregon, Small Fruits Rev., 4, 41, 10.1300/J301v04n03_04
Schreiner, 2009, The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age, Mycologia, 101, 599, 10.3852/08-169
Schubert, 1985, Occurrence and infectivity of vesicular-arbuscular mycorrhizal fungi in North-western Italy, Vitis, 24, 129
Smart, 2006, Grapevine rooting patterns: a comprehensive analysis and a review, Am. J. Enol. Vitic., 57, 89, 10.5344/ajev.2006.57.1.89
Smith, 2008
Sônego, 2005
Southey, 1988, The Effect of Rootstock Cultivar on Grapevine Root Distribution and Density, 57
Staddon, 2003, Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field, Global Change Biol., 9, 186, 10.1046/j.1365-2486.2003.00593.x
Stürmer, 1999, Taxonomic reinterpretation of morphological characters in Acaulosporaceae based on developmental patterns, Mycologia, 91, 849, 10.1080/00275514.1999.12061090
Stürmer, 2011, Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon, Mycorrhiza, 21, 255, 10.1007/s00572-010-0330-6
Tedesco, 1995
Thomson, 1986, Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates, New Phytol., 103, 751, 10.1111/j.1469-8137.1986.tb00850.x
Toler, 2005, Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc, Water Air Soil Pollut., 164, 155, 10.1007/s11270-005-2718-z
Trouvelot, 2015, Arbuscular mycorrhiza symbiosis in viticulture: a review, Agron. Sustain. Dev., 35, 1449, 10.1007/s13593-015-0329-7
Varela-Cervero, 2015, The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species: AMF community composition of mycorrhizal propagules, Environ. Microbiol., 17, 2882, 10.1111/1462-2920.12810
Vieira, 2015, Análise exploratória dos potenciais efeitos das mudanças climáticas nos “Vales da Uva Goethe”, Ambient. soc., 18, 171, 10.1590/1809-4422ASOC885V1832015
Vosatka, 1995, Influence of inoculation with arbuscular mycorrhizal fungi on the growth and mycorrhizal infection of transplanted onion, Agric. Ecosyst. Environ., 53, 151, 10.1016/0167-8809(94)00563-T
Walkley, 1934, An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29, 10.1097/00010694-193401000-00003
Wasserman, 1987, Detection of heavy metals in oak mycorrhizae of northeastern Pennsylvania forests, using x-ray microanalysis, Can. J. Bot., 65, 2622, 10.1139/b87-353
Zhang, 2004, Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China, Plant Soil, 261, 257, 10.1023/B:PLSO.0000035572.15098.f6
