Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2

Symbiosis - Tập 68 - Trang 129-144 - 2016
Oksana Y. Shtark1, Anton S. Sulima1, Alexander I. Zhernakov1, Marina S. Kliukova1,2, Jaroslava V. Fedorina1, Alexander G. Pinaev1, Alexey A. Kryukov1, Gulnara A. Akhtemova1, Igor A. Tikhonovich1,2, Vladimir A. Zhukov1
1All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, Russia
2Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia

Tóm tắt

Arbuscular mycorrhiza (AM) development in five non-nodulating pea (Pisum sativum L.) mutants (sym7, sym11, sym14, sym34, sym38) grown in nurse pots was analyzed at the early stages of colonization by Rhizophagus irregularis. Abundance of external mycelium attached to the root surface and parameters of internal fungal colonization, i.e. intensity of colonization, and arbuscule and vesicle/spore abundance, were evaluated. Mutations in SYM7 (putative ortholog of NSP2, ‘nodulation signaling pathway 2’), SYM11, and SYM14 genes resulted in considerable increase in root surface colonization and a substantial decrease in internal colonization as compared to corresponding wild-type pea lines (wt). In addition, the mutants sym7 and sym11 displayed a highly reduced amount of arbuscules. In contrast, plants mutated for the SYM34 gene displayed strongly reduced root surface colonization. The mutant sym34 also had strongly reduced internal colonization after 10 days of growth, but did not differ from wt 10 days later. The sym38 mutant did not differ from wt. These data indicate that all pea genes analyzed, except SYM38, are essential for both nodule and AM development. The phenotype of sym34 suggested that the pea SYM34 gene is an ortholog of the Medicago truncatula NSP1 (‘nodulation signaling pathway 1’), and early stop codons were in fact detected in an NSP1 homologous sequence of two sym34 mutants. In addition, full co-segregation of the allelic states of a molecular marker representing a polymorphic fragment of the hypothetical pea NSP1 gene, together with the nodulation phenotype of 50 F2 plants, support our hypothesis. A possible explanation for the different AM phenotypes of sym7 and sym34 is given.

Tài liệu tham khảo

Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608 Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351. doi:10.1126/science.1218094 Arrighi JF, Godfroy O, de Billy F, Saurat O, Jauneau A, Gough C (2008) The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection. Proc Natl Acad Sci U S A 105(28):9817–9822. doi:10.1073/pnas.0710273105 Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112(6):1024–1041. doi:10.1007/s00122-005-0205-y Barker SJ, Stummer B, Gao L, Dispain I, O’Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterization. Plant J 15:791–797. doi:10.1046/j.1365-313X.1998.00252.x Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247. doi:10.1371/journal.pbio.0040226 Bonfante P, Genre A, Faccio A, Martini I, Schauser L, Stougaard J, Webb J, Parniske M (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant-Microbe Interact 13:1109–1120. doi:10.1094/MPMI.2000.13.10.1109 Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3: Genes, Genomes. Genetics 1(2):93–103. doi:10.1534/g3.111.000349 Borisov AY, Rozov SM, Tsyganov VE, Morzhina EV, Lebsky VK, Tikhonovich IA (1997) Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.). Mol Gen Genet 254:592–598. doi:10.1007/s004380050456 Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J (2003) The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol 131:1009–1017. doi:10.1104/pp.102.016071 Borisov AY, Danilova TN, Koroleva TA, Naumkina TS, Pavlova ZB, Pinaev AG, Shtark OY, Tsyganov VE, Voroshilova VA, Zhernakov AI, Zhukov VA, Tikhonovich IA (2004) Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application. Biologia 59(Suppl 13):137–144 Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12(5):224–230. doi:10.1104/pp.102.016071 Bradbury SM, Peterson RL, Bowley SR (1991) Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytol 115–120 Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C (2015) Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc‐LCOs in Medicago truncatula. New Phytol 208(1):224–240. doi:10.1111/nph.13427 Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1665. doi:10.1105/tpc.12.9.1647 Cerri MR, Frances L, Laloum T, Auriac MC, Niebel A, Oldroyd GE, Barker DG, Fournier J, de Carvalho-Niebel F (2012) Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol 160(4):2155–2172. doi:10.1104/pp.112.203190 Clemow SR, Clairmont L, Madsen LH, Guinel FC (2011) Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea. Plant Methods 7:46. doi:10.1186/1746-4811-7-46 Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22):10881–10890. doi:10.1093/nar/16.22.10881 Couzigou JM, Zhukov V, Mondy S, el Heba GA, Cosson V, Ellis TN, Ambrose M, Wen J, Tadege M, Tikhonovich I, Mysore KS, Putterill J, Hofer J, Borisov AY, Ratet P (2012) NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. Plant Cell 24(11):4498–4510. doi:10.1105/tpc.112.103747 Delaux PM, Bécard G, Combier JP (2013) NSP1 is a component of the Myc signaling pathway. New Phytol 199(1):59–65. doi:10.1111/nph.12340 Demchenko K, Winzer T, Stougaard J, Parniske M, Pawlowski K (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol 163:381–392. doi:10.1111/j.1469-8137.2004.01123.x Dolgikh EA, Leppyanen IV, Osipova MA, Savelyeva NV, Borisov AY, Tsyganov VE, Geurts R, Tikhonovich IA (2011) Genetic dissection of Rhizobium‐induced infection and nodule organogenesis in pea based on ENOD12A and ENOD5 expression analysis. Plant Biol 13(2):285–296. doi:10.1111/j.1438-8677.2010.00372.x Domonkos A, Horvath B, Marsh JF, Halasz G, Ayaydin F, Oldroyd GE, Kalo P (2013) The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC Plant Biol 13(1):157. doi:10.1186/1471-2229-13-157 Edwards A, Heckmann AB, Yousafzai F, Duc G, Downie JA (2007) Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel. Mol Plant-Microbe Interact 20(10):1183–1191. doi:10.1094/MPMI-20-10-1183 Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966. doi:10.1038/nature00842 Engvild KJ (1987) Nodulation and nitrogen fixation mutants of pea (Pisum sativum). Theor Appl Genet 74:711–713 Genre A, Bonfante P (2007) Check-in procedures for plant cell entry by biotrophic microbes. Mol Plant-Microbe Interact 20:1023–1030. doi:10.1094/MPMI-20-9-1023 Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499. doi:10.1105/tpc.105.035410 Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420. doi:10.1105/tpc.108.059014 Genre A, Chabaud M, Balzergue C, Puech‐Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short‐chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198(1):190–202. doi:10.1111/nph.12146 Gobbato E (2015) Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7. doi:10.1016/j.pbi.2015.05.006 Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore KS, Dénarié J, Schultze M, Oldroyd GE (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22(23):2236–2241. doi:10.1016/j.cub.2012.09.044 Gobbato E, Wang E, Higgins G, Bano SA, Henry C, Schultze M, Oldroyd GE (2013) RAM1 and RAM2 function and expression during arbuscular mycorrhizal symbiosis and Aphanomyces euteiches colonization. Plant Signal Behav 8(10), e26049. doi:10.4161/psb.26049 Graham PH (2008) Ecology of the root-nodule bacteria of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Netherlands, pp 23–58. doi:10.1007/978-1-4020-3548-7_2 Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp.017004 Groth M, Takeda N, Perry J, Uchida H, Drӓxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M (2010) NENA, a Lotus japonicus homologue of Sec13, is required for rhizodermal infection by arbuscular mycorrhizal fungi but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526. doi:10.1105/tpc.109.069807 Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720. doi:10.1139/b02-066 Hirsch S, Kim J, Muñoz A, Heckmann AB, Downie JA, Oldroyd GE (2009) GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell 21(2):545–557. doi:10.1105/tpc.108.064501 Hoagland DR, Arnon DT (1938) The water-culture method for growing plants without soil. In: Agriculture experiment station circular. University of California, Berkeley, p 347 Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GE (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789. doi:10.1126/science.1110951 Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Jensen TH (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364. doi:10.1073/pnas.0508883103 Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(Suppl 2):W43–W46. doi:10.1093/nar/gkm234 Kiss E, Oláh B, Kaló P, Morales M, Heckmann AB, Borbola A, Lózsa A, Kontár K, Middleton P, Downie JA, Oldroyd GED, Endre G (2009) LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes. Plant Physiol 151(3):1239–1249. doi:10.1104/pp.109.143933 Kneen BE, LaRue TA, Hirsch AM, Smith CA, Weeden NF (1990) Sym-13—a gene conditioning ineffective nodulation in Pisum sativum. Plant Physiol 94:899–905. doi:10.1104/pp.94.3.899 Kneen BE, Weeden NF, LaRue TA (1994) Non-nodulating mutants of Pisum sativum (L.) cv. sparkle. J Hered 85:129–133 Koroleva TA, Voroshilova VA, Tsyganov VE, Borisov AY, Tikhonovich IA (2001) Symbiotic locus Sym38 is localized in linkage group V. Pisum Genet 33:30–31 Kosterin OE, Rozov SM (1993) Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genet 25:27–31 Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420(6914):422–426. doi:10.1038/nature01207 Krusell L, Sato N, Fukuhara I, Koch BE, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65(6):861–871. doi:10.1111/j.1365-313X.2010.04474.x Lauressergues D, Delaux PM, Formey D, Lelandais‐Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72(3):512–522. doi:10.1111/j.1365-313X.2012.05099.x Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662):1361–1364. doi:10.1126/science.1093038 Little TM, Hills FJ (1978) Agricultural experimentation, design and analysis. John Wiley & Sons, New York Liu W, Kohlen W, Lillo A, den Camp RO, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJEJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23(10):3853–3865. doi:10.1105/tpc.111.089771 Liu W, Xiao T, van Zeijl A, Limpens E, Bisseling T, Geurts R (2013) The strigolactone biosynthesis gene DWARF27 is rhizobium Nod factor responsive in Medicago truncatula. In: Comparative and functional analysis of NODULATION SIGNALING PATHWAY 1 (NSP1) and NSP2 in rice and Medicago. PhD Thesis. Wageningen University, The Netherlands, pp 77–98 Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640. doi:10.1038/nature02045 Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–64. doi:10.1038/nature09622 Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525–532. doi:10.1046/j.1469-8137.2001.00140.x Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234. doi:10.1105/tpc.106.048264 Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+ dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705. doi:10.1073/pnas.0400595101 Morandi D, Sagan M, Prado-Vivant E, Duc G (2000) Influence of genes determining supernodulation on root colonization by the mycorrhizal fungus Glomus mosseae in Pisum sativum and Medicago truncatula mutants. Mycorrhiza 10:37–42. doi:10.1007/s005720050285 Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant-Microbe Interact 24(6):631–639. doi:10.1094/MPMI-08-10-0181 Murray JD, Cousins DR, Jackson KJ, Liu C (2013) Signaling at the root surface: the role of cutin monomers in mycorrhization. Mol Plant 6(5):1381–1383. doi:10.1093/mp/sst090 Nagae M, Takeda N, Kawaguchi M (2014) Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus. Plant Signal Behav 9(5), e28544. doi:10.4161/psb.28544 Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615. doi:10.1016/S0168-9525(02)02820-2 Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11(4):252–263. doi:10.1038/nrmicro2990 Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi:10.1146/annurev.arplant.59.032607.092839 Oldroyd GE, Long SR (2003) Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod factor signaling. Plant Physiol 131:1027–1032. doi:10.1104/pp.102.010710 Ovchinnikova E, Journet EP, Chabaud M, Cosson V, Ratet P, Duc G, Fedorova E, Liu W, Op den Camp R, Zhukov V, Tikhonovich I, Borisov A, Bisseling T, Limpens E (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago Spp. Mol Plant-Microbe Interact 24(11):1333–1344. doi:10.1094/MPMI−01-11-0013 Ovtsyna AO, Dolgikh EA, Kilanova AS, Tsyganov VE, Borisov AY, Tikhonovich IA, Staehelin C (2005) Nod factors induce Nod factor cleaving enzymes in pea roots. Genetic and pharmacological approaches indicate different activation mechanisms. Plant Physiol 139:1051–1064. doi:10.1104/pp.105.061705 Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi:10.1038/nrmicro1987 Paszkowski U, Jakovleva L, Boller T (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J 47(2):165–173. doi:10.1111/j.1365-313X.2006.02785.x Pislariu CI, Murray JD, Wen J, Cosson V, Muni RRD, Wang M, Benedito VA, Andriankaja A, Cheng X, Torres Jerez I, Mondy S, Zhang S, Taylor ME, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK (2012) A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiol 159(4):1686–1699. doi:10.1104/pp.112.197061 Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14(4):458–467. doi:10.1016/j.pbi.2011.03.016 Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amount of fresh, herbarium and mummified plant tissue. Plant Mol Biol 5:69–76. doi:10.1007/BF00020088 Safronova VI, Novikova NI (1996) Two methods for root nodule bacteria preservation: lyophylization and liquid nitrogen freezing. J Microbiol 24:231–237. doi:10.1016/0167-7012(95)00042-9 Sandal N, Petersen TR, Murray J, Umehara Y, Karas B, Yano K, Kumagai H, Yoshikawa M, Saito K, Hayashi M, Murakami Y, Wang X, Hakoyama T, Imaizumi-Anraku H, Sato S, Kato T, Chen W, Hossain MS, Shibata S, Wang TL, Yokota K, Larsen K, Kanamori N, Madsen E, Radutoiu S, Madsen LH, Radu TG, Krusell L, Ooki Y, Banba M, Betti M, Rispail N, Skøt L, Tuck E, Perry J, Yoshida S, Vickers K, Pike J, Mulder L, Charpentier M, Müller J, Ohtomo R, Kojima T, Ando S, Marquez AJ, Gresshoff PM, Harada K, Webb J, Hata S, Suganuma N, Kouchi H, Kawasaki S, Tabata S, Hayashi M, Parniske M, Szczyglowski K, Kawaguchi M, Stougaard J (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant-Microbe Interact 19(1):80–91. doi:10.1094/MPMI-19-0080 Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA (2011) The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol 157(1):328–340. doi:10.1104/pp.111.178756 Senoo K, Solaiman Z, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS treatment. Plant Cell Physiol 41:726–732. doi:10.1093/pcp/41.6.726 Shtark OY, Borisov AY, Zhukov VA, Nemankin TA, Tikhonovich IA (2012a) Multicomponent symbiosis of legumes with beneficial soil microorganisms: genetic and evolutionary bases of application in sustainable crop production. Russ J Genet Appl Res 2(2):177–189. doi:10.1134/S2079059712020116 Shtark OY, Borisov AY, Zhukov VA, Tikhonovich IA (2012b) Mutually beneficial legume symbioses with soil microbes and their potential for plant production. Symbiosis 57(3):51–62. doi:10.1007/s13199-013-0226-2 Shtark OY, Zhukov VA, Sulima AS, Singh R, Naumkina TS, Akhtemova GA, Borisov AY (2015) Prospects for the use of multi-component symbiotic systems of the legumes. Ecol Genet (“Ekologicheskaya genetika”) 13(1):33–46 Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791. doi:10.1126/science.1111025 Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Academic Press, Maryland Heights, USA Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306. doi:10.3390/12071290 Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E, Maillet F, Cottaz S, Samain E, Venkateshwaran M, Fort S, Morris RJ, Ané JM, Dénarié J, Oldroyd GE (2015) Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27(3):823–838. doi:10.1105/tpc.114.131326 Tadege M, Wang TL, Wen J, Ratet P, Mysore KS (2009) Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiol 151(3):978–984. doi:10.1104/pp.109.144097 Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54(10):1711–1723. doi:10.1093/pcp/pct114 Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221 Tsyganov VE, Borisov AY, Rozov SM, Tikhonovich IA (1994) New symbiotic mutants of pea obtained after mutagenesis of line SGE. Pisum Genet 26:36–37 Tsyganov VE, Voroshilova VA, Kukalev AS, Azarova TS, Yakobi LM, Borisov AY, Tikhonovich IA (1999) Pisum sativum L. genes Sym14 and Sym35 control infection thread growth initiation during the development of symbiotic nodules. Russ J Genet 35:284–291 Tsyganov VE, Voroshilova VA, Priefer UB, Borisov AY, Tikhonovich IA (2002) Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium-pea (Pisum sativum L.) symbiosis. Ann Bot 89:357–366. doi:10.1093/aob/mcf051 Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007, 0099-2240/98/$04.0010 Voroshilova VA, Demchenko KN, Borisov AY, Priefer UB, Tikhonovich IA (2009) Functioning of Pisum sativum genes Sym33, Sym40 and Sym41 with respect to coordinated infection thread and meristem development in symbiotic root nodules. New Phytol 181:913–923. doi:10.1111/j.1469-8137.2008.02723.x Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GED (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22:2242–2246. doi:10.1016/j.cub.2012.09.043 Weeden NF, Kneen BE, LaRue TA (1990) Genetic analysis of sym genes and other nodule-related genes in Pisum sativum. In: Gresshoff PM et al (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, London, pp 323–330. doi:10.1007/978-1-4684-6432-0_34 Yokota K, Soyano T, Kouchi H, Hayashi M (2010) Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice. Plant Cell Physiol 51(9):1436–1442. doi:10.1093/pcp/pcq124 Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179(2):484–494. doi:10.1111/j.1469-8137.2008.02462.x Zhukov VA, Radutoiu S, Madsen LH, Rychagova T, Ovchinnikova E, Borisov A, Tikhonovich I, Stougaard J (2008) The pea Sym37 receptor kinase gene controls infection thread initiation and nodule development. Mol Plant-Microbe Interact 21(12):1600–1608. doi:10.1094/MPMI-21-12-1600 Zhukov VA, Zhernakov AI, Kulaeva OA, Ershov NI, Borisov AY, Tikhonovich IA (2015) De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. Int J Genomics, article 695947. doi:10.1155/2015/695947