Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Affokpon, 2011, Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes, Biol. Fertil. Soils, 47, 207, 10.1007/s00374-010-0525-1
Alkan, 2006, Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, glomus mosseae and G. intraradices, by real-time PCR, Appl. Env. Microbiol., 72, 4192, 10.1128/AEM.02889-05
Allen, 2009, Sulfur transfer through an arbuscular mycorrhiza, Plant Physiol., 149, 549, 10.1104/pp.108.129866
Allen, 1987, Ecology of vesicular-arbuscular mycorrhizae in an arid ecosystem: use of natural processes promoting dispersal and establishment, Mycorrhizae Decade Practical Applications and Research Priorities 7th NACOM IFAS, 133
Allen, 2011, Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems: linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems, J. Arid Land, 3, 155, 10.3724/SP.J.1227.2011.00155
Angelard, 2010, Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription, Curr. Biol., 20, 1216, 10.1016/j.cub.2010.05.031
Antunes, 2012, Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities, Funct. Ecol., 26, 532, 10.1111/j.1365-2435.2011.01953.x
Augé, 2001, Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3, 10.1007/s005720100097
Augé, 2004, Arbuscular mycorrhizae and soil/plant water relations, Can. J. Soil Sci., 84, 373, 10.4141/S04-002
Augé, 2015, Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis, Mycorrhiza, 25, 13, 10.1007/s00572-014-0585-4
Balestrini, 2007, Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells, Mol. Plant Microbe Interact., 20, 1055, 10.1094/MPMI-20-9-1055
Balestrini, 2015, Plant-soil biota interactions, Soil Microbiology, Ecology and Biochemistry, 311, 10.1016/B978-0-12-415955-6.00011-6
Balzergue, 2013, High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus, Plant Nutr., 4, 10.3389/fpls.2013.00426
Bapaume, 2012, How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza, Plant Traffic Transp., 3, 10.3389/fpls.2012.00223
Barr, 2010, Restoration of plant communities in The Netherlands through the application of arbuscular mycorrhizal fungi, Symbiosis, 52, 87, 10.1007/s13199-010-0105-z
Bárzana, 2012, Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions, Ann. Bot., 109, 1009, 10.1093/aob/mcs007
Bárzana, 2015, Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying, Plant Cell Environ., 38, 1613, 10.1111/pce.12507
Bécard, 1988, Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots, New Phytol., 108, 211, 10.1111/j.1469-8137.1988.tb03698.x
Bender, 2014, Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil, ISME J., 8, 1336, 10.1038/ismej.2013.224
Berruti, 2013a, Application of nonspecific commercial AMF inocula results in poor mycorrhization in Camellia japonica L, Symbiosis, 61, 63, 10.1007/s13199-013-0258-7
Berruti, 2013b, Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells, Front. Plant Sci., 4, 10.3389/fpls.2013.00135
Biermann, 1983, Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum *, New Phytol., 95, 97, 10.1111/j.1469-8137.1983.tb03472.x
Bonneau, 2013, Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula, New Phytol., 199, 188, 10.1111/nph.12234
Borriello, 2012, Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach, Biol. Fertil. Soils, 48, 911, 10.1007/s00374-012-0683-4
Breuillin, 2010, Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning, Plant J., 64, 1002, 10.1111/j.1365-313X.2010.04385.x
Breuillin-Sessoms, 2015, Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3, Plant Cell, 27, 1352, 10.1105/tpc.114.131144
Briccoli Bati, 2015, Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels, Mycorrhiza, 25, 97, 10.1007/s00572-014-0589-0
Brundrett, 1999, Glomalean mycorrhizal fungi from tropical Australia, Mycorrhiza, 8, 305, 10.1007/s005720050251
Bucher, 2007, Functional biology of plant phosphate uptake at root and mycorrhiza interfaces, New Phytol., 173, 11, 10.1111/j.1469-8137.2006.01935.x
Calvo-Polanco, 2014, The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants, Plant Cell Physiol., 55, 1017, 10.1093/pcp/pcu035
Casieri, 2013, Biotrophic transportome in mutualistic plant-fungal interactions, Mycorrhiza, 23, 597, 10.1007/s00572-013-0496-9
Casieri, 2012, Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress, Planta, 235, 1431, 10.1007/s00425-012-1645-7
Ceballos, 2013, The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava, PLoS ONE, 8, e70633, 10.1371/journal.pone.0070633
Corkidi, 2004, Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions, J. Environ. Hortic., 22, 149, 10.24266/0738-2898-22.3.149
Cornejo, 2013, Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments, Soil Biol. Biochem., 57, 925, 10.1016/j.soilbio.2012.10.031
Dalpé, 2004, Arbuscular mycorrhiza inoculum to support sustainable cropping systems, Crop Manag., 10, 1094, 10.1094/CM-2004-0301-09-RV
Davison, 2012, Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season, PLoS ONE, 7, e41938, 10.1371/journal.pone.0041938
Declerck, 1998, Monoxenic culture of the intraradical forms of glomus sp. Isolated from a tropical ecosystem: a proposed methodology for germplasm collection, Mycologia, 90, 579, 10.2307/3761216
Douds, 2005, On-farm production and utilization of arbuscular mycorrhizal fungus inoculum, Can. J. Plant Sci., 85, 15, 10.4141/P03-168
Estrada, 2013, Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity, Plant Sci., 201–202, 42, 10.1016/j.plantsci.2012.11.009
Farmer, 2007, Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China, Agric. Ecosyst. Environ. Appl. Soil Ecol., 35, 599, 10.1016/j.apsoil.2006.09.012
Faye, 2013, Evaluation of commercial arbuscular mycorrhizal inoculants, Can. J. Plant Sci., 93, 1201, 10.4141/cjps2013-326
Fiorilli, 2013, The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability, Planta, 237, 1267, 10.1007/s00425-013-1842-z
Gai, 2006, Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato, J. Plant Nutr., 29, 1085, 10.1080/01904160600689225
Garcia, 2014, The role of mycorrhizal associations in plant potassium nutrition, Front. Plant Sci., 5, 10.3389/fpls.2014.00337
Garmendia, 2014, Comparative study of substrate-based and commercial formulations of arbuscular mycorrhizal fungi in romaine lettuce subjected to salt stress, J. Plant Nutr., 37, 1717, 10.1080/01904167.2014.889149
Giovannetti, 2014, Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus, New Phytol., 204, 609, 10.1111/nph.12949
Göhre, 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation, Planta, 223, 1115, 10.1007/s00425-006-0225-0
Gomez, 2009, Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis, BMC Plant Biol., 9, 10, 10.1186/1471-2229-9-10
González-Guerrero, 2005, Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family, Fungal Genet. Biol., 42, 130, 10.1016/j.fgb.2004.10.007
Gosling, 2015, Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management, Mycorrhiza, 10.1007/s00572-015-0651-6
Guether, 2009a, Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus, New Phytol., 182, 200, 10.1111/j.1469-8137.2008.02725.x
Guether, 2009b, A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi, Plant Physiol., 150, 73, 10.1104/pp.109.136390
Gulati, 2008, Mycorrhiza, a fungal solution for the farm economy, Econ. Times
Harrison, 2002, A phosphate transporter from medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi, Plant Cell, 14, 2413, 10.1105/tpc.004861
Harrison, 1995, A phosphate transporter from the mycorrhizal fungus Glomus versiforme, Nature, 378, 626, 10.1038/378626a0
Hart, 2012, Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus, Sci. Hortic., 148, 206, 10.1016/j.scienta.2012.09.018
Hempel, 2007, Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem, Environ. Microbiol., 9, 1930, 10.1111/j.1462-2920.2007.01309.x
Hildebrandt, 2007, Arbuscular mycorrhiza and heavy metal tolerance, Phytochemistry, 68, 139, 10.1016/j.phytochem.2006.09.023
Hogekamp, 2011, Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-Box transcription factor gene expression correlating with fungal contact and spread, Plant Physiol., 157, 2023, 10.1104/pp.111.186635
IJdo, 2011, Methods for large-scale production of AM fungi: past, present, and future, Mycorrhiza, 21, 1, 10.1007/s00572-010-0337-z
Javot, 2011, Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis, Plant J., 68, 954, 10.1111/j.1365-313X.2011.04746.x
Javot, 2007, A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis, Proc. Natl. Acad. Sci. U.S.A., 104, 1720, 10.1073/pnas.0608136104
Johnson, 1997, Functioning of mycorrhizal associations along the mutualism–parasitism continuum*, New Phytol., 135, 575, 10.1046/j.1469-8137.1997.00729.x
Klironomos, 2002, Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum, Mycorrhiza, 12, 181, 10.1007/s00572-002-0169-6
Kobae, 2010, Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean, Plant Cell Physiol., 51, 1411, 10.1093/pcp/pcq099
Koegel, 2013, The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi, New Phytol., 198, 853, 10.1111/nph.12199
Labidi, 2015, Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil, Mycorrhiza, 25, 297, 10.1007/s00572-014-0609-0
Lazcano, 2014, Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes, Soil Biol. Biochem., 74, 184, 10.1016/j.soilbio.2014.03.010
Lehman, 2012, Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production, Agric. Ecosyst. Environ. Appl. Soil Ecol., 61, 300, 10.1016/j.apsoil.2011.11.008
Lehmann, 2015, Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—A meta-analysis, Soil Biol. Biochem., 81, 147, 10.1016/j.soilbio.2014.11.013
Lehmann, 2014, Arbuscular mycorrhizal influence on zinc nutrition in crop plants—A meta-analysis, Soil Biol. Biochem., 69, 123, 10.1016/j.soilbio.2013.11.001
Leifheit, 2015, Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation, Soil Biol. Biochem., 81, 323, 10.1016/j.soilbio.2014.12.003
Leifheit, 2014, Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis, Plant Soil, 374, 523, 10.1007/s11104-013-1899-2
Leyval, 2002, Potential of arbuscular mycorrhizal fungi for bioremediation, Mycorrhizal Technology in Agriculture, 175, 10.1007/978-3-0348-8117-3_14
Lin, 2014, Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus, PLoS Genet., 10, e1004078, 10.1371/journal.pgen.1004078
Lingua, 2008, Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones, Environ. Pollut., 153, 137, 10.1016/j.envpol.2007.07.012
Lumini, 2010, Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach, Environ. Microbiol., 12, 2165, 10.1111/j.1462-2920.2009.02099.x
Meier, 2015, Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils, J. Plant Nutr. Soil Sci., 178, 126, 10.1002/jpln.201400092
Mohammad, 2002, Monoxenic in vitro production and colonization potential of AM fungus Glomus intraradices, Indian J. Exp. Biol., 40, 1087
Munkvold, 2004, High functional diversity within species of arbuscular mycorrhizal fungi, New Phytol., 164, 357, 10.1111/j.1469-8137.2004.01169.x
Nagy, 2005, The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species, Plant J., 42, 236, 10.1111/j.1365-313X.2005.02364.x
Nouri, 2014, Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in petunia hybrida, PLoS ONE, 9, e90841, 10.1371/journal.pone.0090841
Oliveira, 2005, Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment, Mycorrhiza, 16, 23, 10.1007/s00572-005-0010-0
Olsson, 2011, Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis, Fungal Biol., 115, 643, 10.1016/j.funbio.2011.03.008
Olsson, 2008, Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis, Appl. Environ. Microbiol., 74, 4144, 10.1128/AEM.00376-08
Öpik, 2010, The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota), New Phytol., 188, 223, 10.1111/j.1469-8137.2010.03334.x
Pallon, 2007, Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP, Nucl. Instrum. Methods Phys. Res. Sect. B, 260, 149, 10.1016/j.nimb.2007.02.018
Paszkowski, 2002, Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis, Proc. Natl. Acad. Sci. U.S.A., 99, 13324, 10.1073/pnas.202474599
Pearson, 1993, The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P, New Phytol., 124, 489, 10.1111/j.1469-8137.1993.tb03840.x
Pellegrino, 2014, Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi, Soil Biol. Biochem., 68, 429, 10.1016/j.soilbio.2013.09.030
Pellegrino, 2012, Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components, New Phytol., 194, 810, 10.1111/j.1469-8137.2012.04090.x
Pérez-Tienda, 2011, GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices, Fungal Genet. Biol., 48, 1044, 10.1016/j.fgb.2011.08.003
Porcel, 2011, Salinity stress alleviation using arbuscular mycorrhizal fungi. A review, Agron. Sustain. Dev., 32, 181, 10.1007/s13593-011-0029-x
Pozo, 2007, Unraveling mycorrhiza-induced resistance, Curr. Opin. Plant Biol., 10, 393, 10.1016/j.pbi.2007.05.004
Rillig, 2015, Plant root and mycorrhizal fungal traits for understanding soil aggregation, New Phytol., 205, 1385, 10.1111/nph.13045
Rillig, 2006, Mycorrhizas and soil structure, New Phytol., 171, 41, 10.1111/j.1469-8137.2006.01750.x
Rodriguez, 2015, The role of community and population ecology in applying mycorrhizal fungi for improved food security, ISME J., 9, 1053, 10.1038/ismej.2014.207
Ruiz-Lozano, 2003, Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies, Mycorrhiza, 13, 309, 10.1007/s00572-003-0237-6
Ruiz-Lozano, 2010, Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance, Symbioses and Stress Cellular Origin, Life in Extreme Habitats and Astrobiology, 357, 10.1007/978-90-481-9449-0_17
Ruiz-Lozano, 2000, Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity, Mycorrhiza, 10, 137, 10.1007/s005720000075
Ruiz-Lozano, 2012, Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies, J. Exp. Bot., 63, 4033, 10.1093/jxb/ers126
Saia, 2014, Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress, PLoS ONE, 9, e90738, 10.1371/journal.pone.0090738
Säle, 2015, Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi, Soil Biol. Biochem., 84, 38, 10.1016/j.soilbio.2015.02.005
Sánchez-Romera, 2015, Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought, Mycorrhiza, 10.1007/s00572-015-0650-7
Schüßler, 2001, A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res., 105, 1413, 10.1017/S0953756201005196
Sieh, 2013, The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula, New Phytol., 197, 606, 10.1111/nph.12034
Smith, 2000, Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula, New Phytol., 147, 357, 10.1046/j.1469-8137.2000.00695.x
Smith, 2011, Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition, Plant Physiol., 156, 1050, 10.1104/pp.111.174581
Smith, 2008, Mycorrhizal Symbiosis, 3rd Edn
Smith, 2011, Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales, Annu. Rev. Plant Biol., 62, 227, 10.1146/annurev-arplant-042110-103846
Smith, 2012, Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth, Mycologia, 104, 1, 10.3852/11-229
Smith, 2003, Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses, Plant Physiol., 133, 16, 10.1104/pp.103.024380
Smith, 2004, Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake, New Phytol., 162, 511, 10.1111/j.1469-8137.2004.01039.x
Tamayo, 2014, Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis, Plant Traffic Transp., 5, 10.3389/fpls.2014.00547
Tarbell, 2007, Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium, Mycorrhiza, 18, 51, 10.1007/s00572-007-0152-3
Thonar, 2012, Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation, Mol. Ecol. Resour., 12, 219, 10.1111/j.1755-0998.2011.03086.x
Tisserant, 2012, The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont, New Phytol., 193, 755, 10.1111/j.1469-8137.2011.03948.x
Tisserant, 2013, Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis, Proc. Natl. Acad. Sci. U.S.A., 110, 20117, 10.1073/pnas.1313452110
van der Heijden, 1998, Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature, 396, 69, 10.1038/23932
van der Heijden, 2015, Mycorrhizal ecology and evolution: the past, the present, and the future, New Phytol., 205, 1406, 10.1111/nph.13288
Verbruggen, 2013, Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success, New Phytol., 197, 1104, 10.1111/j.1469-8137.2012.04348.x
Volpe, 2015, The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots, Plant Cell Environ., 10.1111/pce.12659
Vosátka, 2013, Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks, Symbiosis, 58, 29, 10.1007/s13199-012-0208-9
Vosátka, 1999, Microbial inoculations of plants for revegetation of disturbed soils in degraded ecosystems, Nature and Culture Landscape Ecology, 303
Wagg, 2015, Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other, J. Ecol., 103, 1233, 10.1111/1365-2745.12452
Walder, 2015, Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax, New Phytol., 205, 1632, 10.1111/nph.13292
Walder, 2015, Regulation of resource exchange in the arbuscular mycorrhizal symbiosis, Nat. Plants, 1, 15159, 10.1038/nplants.2015.159
Werner, 2015, Order of arrival structures arbuscular mycorrhizal colonization of plants, New Phytol., 205, 1515, 10.1111/nph.13092
Xie, 2013, Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis, New Phytol., 198, 836, 10.1111/nph.12188
Xu, 2007, Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression, J. Exp. Bot., 58, 2491, 10.1093/jxb/erm096