Arbuscular Mycorrhizal Fungi Alleviate the Negative Effect of Temperature Stress in Millet Lines with Contrasting Soil Aggregation Potential

Adrien Byamungu Ndeko1,2, Hassna Founoune-Mboup3, Aboubacry Kane3,1, Laurent Cournac4
1Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
2Faculty of Agriculture and Environmental Sciences, Department of Crop Production, Université Evangélique en Afrique (UEA), Bukavu, Democratic Republic of the Congo
3Laboratoire Commun de Microbiologie, IRD/ISRA/UCAD, Bel-Air, Dakar, Senegal
4IRD, UMR Eco&Sols, LMI IESOL, Centre de recherche ISRA-IRD, Dakar, Senegal

Tóm tắt

Arbuscular mycorrhizal fungi (AMF) establish a mutualistic symbiosis with several plants and play a key role in improving plant growth, tolerance to abiotic and biotic stresses as well as the soil structure. This work aimed at elucidating the AMF temperature stress modulating impact on four pearl millet lines plant growth and soil aggregation. Experimental trials were carried out in both greenhouse and growth chamber to determine the response of the four millet lines to inoculation with two AMF strains (Rhizophagus aggregatus and Funneliformis mosseae) under heat and non-stress conditions. We first investigated the mycorrhizal colonization (MC) and the mycorrhizal growth response (MGR) of millet lines in relation with their soil aggregation potential (root adhering soil/root biomass, MAS/RB) in the greenhouse. Secondly, the four millet lines were grown in two separated growth chambers and subjected to a day/night temperature of 32/28 °C as the control treatment and 37/32 °C as the temperature stress treatment. Plant growth, mycorrhization rate and several physiological, mycorrhizal and soil parameters were measured. Results showed that the mycorrhization rates of millet lines were low and not significantly different. Funneliformis mosseae (31.39%) showed higher root colonization than Rhizophagus aggregatus (22.79%) and control (9.79%). The temperature stress reduced the mycorrhizal colonization rate, shoot and root biomass, and the soil aggregation for all tested lines. L220 and L132 showed more MC rate and MGR than the other lines under control and high-temperature treatment. The MGR was significantly better under temperature stress conditions than in the control. Under the temperature stress conditions, inoculation with R. aggregatus and F. mosseae increased chlorophyll concentration, root dry weight and shoot dry weight as compared to non-inoculated plants. AMF inoculation, particularly with F. mosseae had a positive influence on the tolerance of millet lines to temperature stress. This study demonstrates that AMF play an important role in the response of these four millet lines to temperature stress. AMF is therefore an important component in the adaptation of crops to climatic variations in Sub-Saharan Africa.

Từ khóa


Tài liệu tham khảo

Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42(12):2276–2281. https://doi.org/10.1016/j.soilbio.2010.08.029

Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398

Albrecht A, Angers DA, Beare MH, Blanchart E (1998) Déterminants organiques et biologiques de l’agrégation: implications pour la recapitalisation de la fertilité physique des sols tropicaux. Agricultures 7(5):357–363

Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3(2):139–148. https://doi.org/10.1055/s-2001-12905

Bationo A, Christianson CB, Klaij MC (1993) The effect of crop residue and fertilizer use on pearl millet yields in Niger. Fertil Res 34(3):251–258

Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41(7):1491–1496

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

Benjelloun S, El Harchli EH, Amrani JK, El Ghachtouli N, Fikri BK, El Yamani J (2014) Etude de l’importance de la mycorhization dans la synthèse des composés phénoliques chez le maïs ( Zea mays L.) en condition de stress hydrique. Int J Eng Sci 04(12):43–49

Bethlenfalvay GJ, Barea J‑M (2009) Mycorrhizae in sustainable agriculture. I. Effects on seed yield and soil aggregation. Am J Altern Agric 9(04):157. https://doi.org/10.1017/S0889189300005919

Bourou S, Ndiaye F, Diouf M, Van Damme P (2011) Effets de l ’ inoculation mycorhizienne sur le comportement agro-physiologique des écotypes du tamarinier ( Tamarindus indica L .) au Sénégal. J Appl Biosci 46:3093–3102

Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22. https://doi.org/10.1016/j.geoderma.2004.03.005

Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorhizal fungi ameliorate temperature stress in thermophilic plants. Ecol Soc Am 90(5):1378–1388

Buresh RJ, Smithson PC, Hellums DT (1997) Building soil phosphorus capital in Africa. Replenishing soil fertility in Africa 51:111–149

Chaney K, Swift RS (1984) The influence of organic matter on aggregate stability in some British soils. J Soil Sci 35(2):223–230. https://doi.org/10.1111/j.1365-2389.1984.tb00278.x

Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73(2):197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.x

Diop I, Kane A, Wade TK, Sanon KB, Neyra M, Noba K (2013) Impacts des conditions pédoclimatiques et du mode cultural sur la réponse du niébé ( Vigna unguiculata L . Walp .) à l’inoculation endomycorhizienne avec Rhizophagus irregularis. J Appl Biosci 69:5465–5474

Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105(1):127–138. https://doi.org/10.1007/s00122-002-0867-7

Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Phys Biochem 132:297–307

El Mrabet S, Msanda F, El Mousadik A, Ouahmane L (2017) Evaluation du pouvoir mycorhizien des sols rhizosphériques de Chamaecytisus albidus et Ononis natrix dans la production de plants de qualité d’Argania spinosa (L.) Skeels. Am J Innov Res Appl Sci 4(2):44–51.

Entry J, Rygiewicz P, Watrud L, Donnelly P (2002) Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res 7(1):123–138. https://doi.org/10.1016/S1093-0191(01)00109-5

Fahey C, Winter K, Slot M, Kitajima K (2016) Influence of arbuscular mycorrhizal colonization on whole‐plant respiration and thermal acclimation of tropical tree seedlings. Ecol Evol 6(3):859–870

FAO (2006) World Reference Base for Soil Resources. A Framework for International Classification, Correlation and Communication. Food and Agriculture Organization, Rome, 103 pages. Available online at: http://www.fao.org/3/a-a0510e.pdf. Accessed 20 Oct 2020

FAO W (2009) Principles and methods for the risk assessment of chemicals in food. Environ Health Criteria 240

Gaston S, Dahiratou ID, Moussa B, Dougbedji F (2016) Contribution of previous legumes to soil fertility and millet yields in West African Sahel. Afr J Agric Res 11(28):2486–2498. https://doi.org/10.5897/AJAR2016.11156

Gavito ME, Olsson PA, Rouhier H, Medina-Peñafiel A, Jakobsen I, Bago A, Azcón-Aguilar C (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168(1):179–188. https://doi.org/10.1111/j.1469-8137.2005.01481.x

Gaye M (1994) Cultures céréalières dans le bassin arachidier: motivations et contraintes chez les producteurs. Institut Senegalais de Recherches Agricoles (ISRRA), Sénegal, Unival 5(2):26

Heinemeyer A, Fitter AH (2004) Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. J Exp Bot 55(396):525–534. https://doi.org/10.1093/jxb/erh049

Heinemeyer A, Ridgway KP, Edwards EJ, Benham DG, Young JPW, Fitter AH (2004) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Change Biol 10(1):52–64

Heinemeyer A, Ineson P, Ostle N, Fitter AH (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol 171(1):159–170

Jerbi M, Labidi S, Lounès-Hadj Sahraoui A, Chaar H, Ben Jeddi F (2020) Higher temperatures and lower annual rainfall do not restrict, directly or indirectly, the mycorrhizal colonization of barley (Hordeum vulgare L.) under rainfed conditions. PloS one 15(11):e0241794

Kaci Y, Heyraud A, Barakat M, Heulin T (2005) Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res Microbiol 156(4):522–531. https://doi.org/10.1016/j.resmic.2005.01.012

Kane A, Diop D, Sylla SN, Noba K (2016) Date et densité optimales de semis du niébé [ Vigna unguiculata ( L .) Walp .] en association avec le mil [ Pennisetum glaucum ( L ... Date et densité optimales de semis du niébé [ Vigna unguiculata ( L .) Walp .] en association avec le mil [ Pennisetum g. J Appl Biosci. https://doi.org/10.4314/jab.v76i1.4

Lekberg Y, Koide RT (2008) Effect of soil moisture and temperature during fallow on survival of contrasting isolates of arbuscular mycorrhizal fungi. Botany 86(10):1117–1124. https://doi.org/10.1139/B08-077

Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil 251(2):279–289

Mataix-Solera J, Cerdà A, Arcenegui V, Jordán A, Zavala LM (2011) Fire effects on soil aggregation: a review. Earth Sci Rev 109(1):44–60. https://doi.org/10.1016/j.earscirev.2011.08.002

Miller RM, Yastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Arbuscular mycorrhizas: physiology and function, pp 3–18 https://doi.org/10.1007/978-94-017-0776-3

Naoura G, Nebie B, Nanema RK, Kando PB, Traore ER, Sawadogo M, Zongo J (2014) Caractérisation de quelques écotypes performants de sorghos Burkinabés. Int J Biol Chem Sci 8(5):2109–2118

Ndeko AB, Basimine GC, Bagula EM, Mugumaarhahama Y, Ndusha BN, Rehema P, Nachigera GM (2019) Comparative effect of Rhizophagus irregularis strain on cassava root development and Phosphorus uptake under acidic soils conditions of Walungu territory, Eastern DR Congo. J Appl Biosci. https://doi.org/10.35759/JABs.148.1

Ndour PMS, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo A‑L, Dezette D, Chapuis-Lardy L, Assigbetsé K, Kane NA, Vigouroux Y, Achouak W, Ndoye I, Heulin T, Cournac L (2017) Pearl millet genetic traits shape Rhizobacterial diversity and modulate Rhizosphere aggregation. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01288

Ndoye F, Diedhiou AG, Gueye M, Fall D, Barnaud A, Sy MO et al (2016) Réponse du fonio blanc (Digitaria exilis Stapf) à l’inoculation avec des champignons mycorhiziens à arbuscules en conditions semi-contrôlées. J Appl Biosci 103:9784–9799

Nouaim R, Chaussod R (1996) Rôle des mycorhizes dans l’alimentation hydrique et minérale des plantes, notamment des ligneux de zones arides. Cah Options Mediterr 20:9–26

Persaud N, Gandah M, Ouattara M, Mokete N (1993) Estimating Leaf Area of Pearl Millet from Linear Measurements. Agron J 85(1):10. https://doi.org/10.2134/agronj1993.00021962008500010002x

Pierre S, Litton CM, Giardina CP, Sparks J P, Fahey TJ (2020) Mean annual temperature influences local fine root proliferation and arbuscular mycorrhizal colonization in a tropical wet forest. Ecol Evol 10(18):9635–9646.

Plenchette C, Bois J‑F, Cadet P, Duponnois R (1999) La mycorhization ( Glomus aggregatum ) du mil ( Pennisetum glaucum ). Gestion 7:379–384

Raya-Hernández AI, Jaramillo-López PF, López-Carmona DA, Díaz T, Carrera-Vltierra JA, Larsen J (2020) Field evidence for maize-mycorrhiza interactions in agroecosystems with low and high P soils under mineral and organic fertilization. Appl Soil Ecol 149:103511. https://doi.org/10.1016/j.apsoil.2020.103511

Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

Samaké O, Smaling EMA, Kropff MJ, Stomph TJ, Kodio A (2005) Effects of cultivation practices on spatial variation of soil fertility and millet yields in the Sahel of Mali. Agric Ecosyst Environ 109(3):335–345

Seifi E, Teymoor YS, Alizadeh M, Fereydooni H (2014) Olive mycorrhization: influences of genotype, mycorrhiza, and growing periods. Sci Hortic 180:214–219

Sensoy S, Demir S, Turkmen O, Erdinc C, Savur OB (2007) Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Sci Hortic 113(1):92–95.

Singh KP, Kumar KR, Prasad KV, Pal M, Raju DVS (2014) Influence of VAM inoculation on root colonization, survival, physiological and biochemical characteristics of chrysanthemum plantlets Influence of VAM inoculation on root colonization, survival, physiological and biochemical characteristics of chrysan. Indian J Hort 65(4):461–465

Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79(1):7–31. https://doi.org/10.1016/j.still.2004.03.008

Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ (2013). Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23(6):507–514

Traoré S, Bagayoko M, Coulibaly BS, Coulibaly A (2002) Amélioration de la gestion de la fertilité des sols et celle des cultures dans les zones sahéliennes de l’Afrique de l’Ouest: une condition sine qua none pour l’augmentation de la productivité et de la durabilité des systèmes de culture à base de mil. Syngenta foundation for sustainaible agriculture http://www.syngentafoundation.org.

Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91(1):37–46

Wright DP, Scholes JD, Read DJ, Rolfe SA (2005). European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167(3):881–896

Wright SF, Green VS, Cavigelli MA (2007) Glomalin in aggregate size classes from three different farming systems. Soil Tillage Res 94(2):546–549

Zhu X‑C, Song F‑B, Liu S‑Q, Liu T‑D (2011) Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346(1–2):189–199. https://doi.org/10.1007/s11104-011-0809-8

Zougari-Elwedi B, Sanaa M, Sahraoui AL-HS (2012) Évaluation de l’impact de la mycorhization arbusculaire sur la nutrition minérale des plantules de palmier dattier (Phœnix dactylifera L . var. Deglet Nour). Etude Et Gestion Des Sols 19(3+4):193–202