Arboreal Galois representations

Nigel Boston1, Rafe Jones1
1University of Wisconsin, Madison, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aitken W., Hajir F., Maire C., (2005) Finitely ramified iterated extensions. Int. Math. Res. Not. 14, 855–880

Boston, N.: Galois groups of tamely ramified p-extensions. In: Proceedings of Journées Arithmetiques 2005, special issue of Journal de Théorie des Nombres de Bordeaux. To appear (2006)

Boston N., Jones R. Densely settled groups and arboreal Galois representations. preprint (2006)

Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14(4), 843–939 (2001) (electronic)

Fontaine, J.-M., Mazur, B.: Geometric Galois representations. In: Coates, J., Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I Internat. Press, Cambridge, MA, pp. 41–78.

Jones, R.: The density of prime divisors in the arithmetic dynamics of quadratic polynomials. Available at http://www.arxiv.org .

Labute J. Mild pro p-groups and Galois groups of p-extensions of Q. J. Reine Angew. Math. Yau, S.-T.(eds.) 596, (2006), 155–182.

Markšaĭtis G.N., (1963) On p-extensions with one critical number.Izv. Akad. Nauk SSSR Ser. Mat. 27, 463–466

Nekrashevych V. (2005) Self-similar groups, Vol. 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI

Odoni R.W.K. The Galois theory of iterates and composites of polynomials. Proc. London Math. Soc. (3) 51(3), (1985), 385–414.

Serre J.-P. (1972), Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4): 259–331

Serre J.-P. (1987), Sur les représentations modulaires de degré 2 de $${\rm Gal}(\overline{Q}/Q)$$ . Duke Math. J. 54(1): 179–230

Shimura G., (1966) A reciprocity law in non-solvable extensions. J. Reine Angew. Math. 221, 209–220

Stoll M., (1992) Galois groups over Q of some iterated polynomials. Arch. Math. (Basel) 59(3): 239–244

Wiles A. (1995), Modular elliptic curves and Fermat’s last theorem’. Ann. of Math. (2) 141(3): 443–551