Arbitrarily structured quantum emission with a multifunctional metalens

Chi Li1, Jaehyuck Jang2, Trevon Badloe3, Tieshan Yang1, Joohoon Kim3, Jae‐Kyung Kim3, Minh Tho Nguyen1, S. Maier4, Junsuk Rho2, Haoran Ren4, Igor Aharonovich5
1School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
2Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
3Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
4School of Physics and Astronomy, Monash University, Melbourne, VIC, 3800, Australia
5ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW, 2007, Australia

Tóm tắt

AbstractStructuring light emission from single-photon emitters (SPEs) in multiple degrees of freedom is of great importance for quantum information processing towards higher dimensions. However, traditional control of emission from quantum light sources relies on the use of multiple bulky optical elements or nanostructured resonators with limited functionalities, constraining the potential of multi-dimensional tailoring. Here we introduce the use of an ultrathin polarisation-beam-splitting metalens for the arbitrary structuring of quantum emission at room temperature. Owing to the complete and independent polarisation and phase control at the single meta-atom level, the designed metalens enables simultaneous mapping of quantum emission from ultra-bright defects in hexagonal boron nitride and imprinting of an arbitrary wavefront onto orthogonal polarisation states of the sources. The hybrid quantum metalens enables simultaneous manipulation of multiple degrees of freedom of a quantum light source, including directionality, polarisation, and orbital angular momentum. This could unleash the full potential of solid-state SPEs for their use as high-dimensional quantum sources for advanced quantum photonic applications.

Từ khóa


Tài liệu tham khảo

D.D. Awschalom, R. Hanson, J. Wrachtrup, B.B. Zhou, Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018)

X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater 4, 669–684 (2019)

I. Aharonovich, J.P. Tetienne, M. Toth, Quantum emitters in hexagonal boron nitride. Nano Lett 22, 9227–9235 (2022)

J.D. Caldwell et al., Photonics with hexagonal boron nitride. Nat. Rev. Mater 4, 552–567 (2019)

F. Hayee et al., Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater 19, 534–539 (2020)

P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017)

A.H. Dorrah, F. Capasso, Tunable structured light with flat optics. Science 376, eabi6860 (2022)

M.L. Tseng et al., Vacuum ultraviolet nonlinear metalens. Sci. Adv. 8, eabn5644 (2022)

T. Santiago-Cruz et al., Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022)

A.S. Solntsev, G.S. Agarwal, Y.S. Kivshar, Metasurfaces for quantum photonics. Nat. Photonics 15, 327–336 (2021)

J. Ni et al., Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021)

L. Li et al., Metalens-array-based high-dimensional and multiphoton quantum source. Science. 368, 1487–1490 (2020)

K. Wang et al., Quantum metasurface for multiphoton interference and state reconstruction. Science. 361, 1104–1108 (2018)

H. Ren et al., An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13, 4183 (2022)

T. Badloe, I. Kim, Y. Kim, J. Kim, J. Rho, Electrically tunable Bifocal Metalens with Diffraction-Limited focusing and imaging at visible wavelengths. Adv. Sci. 8, e2102646 (2021)

W.J. Joo et al., Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science. 370, 459–463 (2020)

X. Ni, A.V. Kildishev, V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 1–6 (2013)

H. Ren et al., Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020)

L. Jin et al., Dielectric multi-momentum meta-transformer in the visible. Nat. Commun. 10, 4789 (2019)

X. Fang, H. Ren, M. Gu, Orbital angular momentum holography for high-security encryption. Nat. Photonics. 14, 102–108 (2020)

S. So et al., Multicolor and 3D Holography generated by inverse-designed single-cell metasurfaces. Adv. Mater. 35, 2208520 (2023)

S.Q. Li et al., Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science. 364, 1087–1090 (2019)

I. Kim et al., Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv. 7, eabe9943 (2021)

F. Yang, P.K. Jha, H. Akbari, H.C. Bauser, H.A. Atwater, A hybrid coupler for directing quantum light emission with high radiative Purcell enhancement to a dielectric metasurface lens. J. Appl. Phys. 130, 163103 (2021)

T.Y. Huang et al., A monolithic immersion metalens for imaging solid-state quantum emitters. Nat. Commun. 10, 2392 (2019)

Y. Bao et al., On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface. Sci. Adv. 6, eaba8761 (2020)

C. Wu et al., Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv. 8, eabk3075 (2022)

E.N. Knall et al., Efficient source of shaped single photons based on an Integrated Diamond Nanophotonic System. Phys. Rev. Lett. 129, 053603 (2022)

B. Chen et al., Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021)

Y. Yang et al., Revealing Structural Disorder in Hydrogenated Amorphous Silicon for a low-loss Photonic platform at visible frequencies. Adv. Mater. 33, e2005893 (2021)

G. Yoon, K. Kim, D. Huh, H. Lee, J. Rho, Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020)

W. Barnes et al., Solid-state single photon sources: light collection strategies. Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys. 18, 197–210 (2002)

Y. Guo et al., High-efficiency and wide‐angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater. 6, 1800592 (2018)

P.G. Kwiat et al., New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

J.L. O’brien, A. Furusawa, J. Vučković, Photonic quantum technologies. Nat. Photonics. 3, 687–695 (2009)

F. Basso Basset et al., Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021)

M. Toishi, D. Englund, A. Faraon, J. Vuckovic, High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt. Express. 17, 14618–14626 (2009)

J.E. Froch et al., Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett 21, 6549–6555 (2021)

J. Liu et al., A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019)

X.-L. Chu et al., Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica. 1, 203–208 (2014)

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Entanglement of the orbital angular momentum states of photons. Nature. 412, 313–316 (2001)

R. Fickler et al., Quantum entanglement of high angular momenta. Science. 338, 640–643 (2012)

M. Malik et al., Multi-photon entanglement in high dimensions. Nat. Photonics. 10, 248–252 (2016)

T. Badloe, S. Lee, J. Rho, Computation at the speed of light: metamaterials for all-optical calculations and neural networks. Adv. Photonics. 4, 064002 (2022)

A. Forbes, M. de Oliveira, M.R. Dennis, Structured light. Nat. Photonics. 15, 253–262 (2021)

T. Stav et al., Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science. 361, 1101–1104 (2018)

D. Cozzolino et al., Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl 11, 064058 (2019)

A. Gottscholl et al., Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021)

H.L. Stern et al., Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nat. Commun. 13, 618 (2022)

N. Chejanovsky et al., Single-spin resonance in a van der Waals embedded paramagnetic defect. Nat. Mater. 20, 1079–1084 (2021)

X. Gao et al., Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 21, 1024–1028 (2022)

I.O. Robertson et al., Imaging current control of magnetization in Fe3GeTe2 with a widefield nitrogen-vacancy microscope. 2D Mater. 10, 015023 (2022)