Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide

Stephen Tottey1, Maryse A. Block1, Michael Allen1, Tomas Westergren1, Catherine Albrieux1, Henrik Vibe Scheller1, Sabeeha Merchant1, Poul Erik Jensen1
1Department of Chemistry and Biochemistry, University of California, Box 951569, Los Angeles, CA 90095; Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168 Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Université J. Fourier/Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique-Grenoble, Départment Réponse et Dynamique Cellulaires/Physiologie Cellulaire Végétale, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France; and Plant...

Tóm tắt

CHL27, the Arabidopsis homologue to Chlamydomonas Crd1, a plastid-localized putative diiron protein, is required for the synthesis of protochlorophyllide and therefore is a candidate subunit of the aerobic cyclase in chlorophyll biosynthesis. δ-Aminolevulinic acid-fed antisense Arabidopsis plants with reduced amounts of Crd1/CHL27 accumulate Mg-protoporphyrin IX monomethyl ester, the substrate of the cyclase reaction. Mutant plants have chlorotic leaves with reduced abundance of all chlorophyll proteins. Fractionation of Arabidopsis chloroplast membranes shows that Crd1/CHL27 is equally distributed on a membrane-weight basis in the thylakoid and inner-envelope membranes.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.genet.31.1.61

10.2307/3870056

10.1023/A:1006297731456

10.1046/j.0014-2956.2001.02643.x

10.1046/j.1432-1327.1998.2570185.x

10.1128/jb.172.9.5001-5010.1990

10.1111/j.1432-1033.1996.0085u.x

10.1104/pp.79.3.725

Walker, C. J., Mansfield, K. E., Rezzano, I. N., Hanamoto, C. M., Smith, K. M. & Castelfranco, P. A. (1988) Biochem. J. 255, 685-692.3202840

10.1042/bj2430023

10.1104/pp.69.1.107

10.1126/science.184.4138.800

10.1104/pp.75.3.658

10.1042/bj2760691

10.1104/pp.112.1.105

10.1093/emboj/19.10.2139

Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. (2002) Science 22, 1616-1620.

10.1128/JB.184.3.746-753.2002

10.1093/emboj/cdf666

10.1104/pp.116.1.27

10.1046/j.1365-313x.2000.00898.x

10.1007/s004250100593

10.1038/nature01204

10.1007/s000180050442

10.1105/tpc.010446

10.1073/pnas.98.4.2053

10.1105/tpc.11.5.901

10.1038/313810a0

10.1126/science.236.4806.1299

10.1007/BF00014672

10.1002/j.1460-2075.1983.tb01715.x

10.1046/j.1365-313x.1998.00343.x

10.1074/jbc.M000550200

10.1046/j.1365-313X.1999.00419.x

10.1016/0076-6879(87)48036-1

10.1016/S0021-9258(18)45813-9

10.1016/S0021-9258(17)44113-5

10.1104/pp.111.1.1

Granick, S. (1959) Plant Physiol. 34, S-xviii

10.1105/tpc.010420

Joyard, J., Billecocq, A., Bartlett, S. G., Block, M. A., Chua, N. H. & Douce, R. (1983) J. Biol. Chem. 25, 10000-10006.

10.1046/j.1365-313X.1996.10050903.x

10.1146/annurev.pp.42.060191.001525

10.1023/A:1021195226978

10.1016/0959-440X(95)80008-5

10.1021/cr9500489

10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P

10.1104/pp.108.4.1505

10.1046/j.1365-313X.2003.01798.x