Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrade LEC, Tan EM, Chan EKL (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci USA 90:1947–1951
Arnez JG, Steitz TA (1994) Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33:7560–7567
Barth S, Hury A, Liang XH et al (2005) Elucidating the role of H/ACA-like RNAs in trans-splicing and rRNA processing via RNA interference silencing of the Trypanosoma brucei CBF5 pseudouridine synthase. J Biol Chem 280:34558–34568
Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Life Sci 316:1194–1199
Brasch K, Ochs RL (1992) Nuclear bodies (NBs): a newly “rediscovered” organelle. Exp Cell Res 202:211–223
Cadwell C, Yoon HJ, Zebarjadian Y et al (1997) The yeast nucleolar protein Cbf5p is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3. Mol Cell Biol 17:6175–6183
Darzacq X, Jády BE, Verheggen C et al (2002) Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746–2756
Darzacq X, Kittur N, Roy S et al (2006) Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J Cell Biol 173:207–218
Dez C, Noaillac-Depeyre J, Caizergues-Ferrer M et al (2002) Naf1p, an essential nucleoplasmic factor specifically required for accumulation of box H/ACA small nucleolar RNPs. Mol Cell Biol 22:7053–7065
Fan HY, Hu Y, Tudor M et al (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12:999–1010
Förch P, Puig O, Martinez C et al (2002) The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5´splice sites. EMBO J 21:6882–6892
Ganot P, Bortolin M-L, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809
Gu X, Yu M, Ivanetich KM et al (1998) Molecular recognition of tRNA by tRNA pseudouridine 55 synthase. Biochemistry 37:339–343
Heiss NS, Knight SW, Vulliamy TJ et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet 19:32–38
Heiss NS, Girod A, Salowsky R et al (1999) Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita. Hum Mol Genet 8:2515–2524
Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574
Jasencakova Z, Meister A, Walter J et al (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100
Jiang W, Middleton K, Yoon H-J et al (1993) An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol Cell Biol 13:4884–4893
Kiss AM, Jády BE, Darzacq X et al (2002) A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 30:4643–4649
Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622
Kiss-László Z, Henry Y, Bachellerie JP et al (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088
Koonin EV (1996) Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res 24:2411–2415
Kukalev AS, Enukashvili NI, Podgornaia OI (2005) Multifunctional nuclear protein NAP57 specifically interacts with dead RNA-helicase p68. Tsitologiia 47:533–539
Lafontaine DLJ, Bousquet-Antonelli C, Henry Y et al (1998) The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev 12:527–537
Lermontova I, Schubert V, Fuchs J et al (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451
Maceluch J, Kmieciak M, Szweykowska-Kuliáska Z et al (2001) Cloning and characterization of Arabidopsis thaliana AtNAP57 – a homologue of yeast pseudouridine synthase Cbf5p. Acta Biochim Pol 48:699–709
Marchler-Bauer A, Anderson JB, Cherukuri PF et al (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196
Massenet S, Mougin A, Branlant S (1998) Posttranscriptional modifications in the U small nuclear RNAs. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 201–227
McBride AE, Silver PA (2001) State of the arg: protein methylation at arginine comes of age. Cell 106:5–8
Meier UT, Blobel G (1994) NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol 127:1505–1514
Mélèse T, Xue Z (1995) The nucleolus: an organelle formed by the act of building a ribosome. Curr Opin Cell Biol 7:319–324
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497
Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573
Nurse K, Wrzesinski J, Bakin A et al (1995) Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA 1:102–112
Pendle AF, Clark GP, Boon R et al (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269
Phillips B, Billin AN, Cadwell C et al (1998) The Nop60B gene of Drosophila encodes an essential nucleolar protein that functions in yeast. Mol Gen Genet 260:20–29
Rautengarten C, Steinhauser D, Büssis D et al (2005) Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family. PLoS Comput Biol 1:e40
Reddy R, Busch H (1983) Small nuclear RNAs and RNA processing. Prog Nucleic Acid Res Mol Biol 30:127–162
Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994
Steinhauser D, Usadel B, Luedemann A et al (2004) CSB.DB: a comprehensive systems-biology database. Bioinformatics 20:3647–3651
ten Hoopen R, Manteuffel R, Doležel J et al (2000) Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109:482–489
Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9:337–342
Walter M, Chaban C, Schütze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438
Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23:1857–1867
Yang PK, Rotondo G, Porras T et al (2002) The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. J Biol Chem 277:45235–45242