Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiết Xuất Từ Vỏ Quả Lựu (Punica Granatum) Là Chất Ức Chế Ăn Mòn Thân Thiện Với Môi Trường Cho Hợp Kim Nhôm Trong Môi Trường Axit
Tóm tắt
Hành động ức chế của chiết xuất vỏ quả lựu (Punica granatum) đối với sự ăn mòn của hợp kim nhôm trong dung dịch hydrochloric acid 1,0 M đã được nghiên cứu bằng các kỹ thuật phân cực động lực học (potentiodynamic polarization) và quang phổ điện hóa (electrochemical impedance spectroscopy). Kết quả thu được cho thấy việc bổ sung chiết xuất làm giảm tốc độ ăn mòn của hợp kim nhôm. Tỷ lệ ức chế tăng khi nồng độ chiết xuất tăng và giảm khi nhiệt độ tăng. Chiết xuất hoạt động như một chất ức chế loại hỗn hợp (mixed type inhibitor), và được hấp phụ lên bề mặt nhôm theo isotherm hấp phụ Langmuir. Bề mặt đã được kiểm tra bằng kính hiển vi điện tử quét (Scanning electron microscopy) và lớp bảo vệ hình thành trên bề mặt đã được phân tích bằng biến thể Fourier của hồng ngoại (Fourier Transform Infra-Red).
Từ khóa
#Punica granatum #ức chế ăn mòn #hợp kim nhôm #acid hydrochloric #hấp phụ Langmuir #quang phổ điện hóa #kính hiển vi điện tử quét.Tài liệu tham khảo
Chaubey N, Savita SVK, Quraichi MA (2017) Corrosion inhibition performance of different bark extracts on aluminium in alkaline solution. J Assoc Arab Univ Basic App Sci 22:38–44. https://doi.org/10.1016/j.jaubas.2015.12.003
Wernick S, Pinner R, Sheasby PG (1987) The surface treatment and finishing of aluminium and its alloys, 5th edn. Finishing Publications Ltd, Teddington
Abdel-Gaber AM, Abd-El-Nabey BA, Sidahmed IM, El-Zayady AM, Saadawy M (2006) Kinetics and thermodynamics of aluminium dissolution in 1.0 M sulphuric acid containing chloride ions. Mater Chem Phys 98:291–297. https://doi.org/10.1016/j.matchemphys.2005.09.023
Lorking KF, Mayne JEO (1961) The corrosion of aluminium. J Appl Chem 11:170–180. https://doi.org/10.1002/jctb.5010110503
Mercier D, Barthés-Labrousse MG (2009) The role of chelating agents on the corrosion mechanisms of aluminium in alkaline aqueous solutions. Corros Sci 51:339–348. https://doi.org/10.1016/j.corsci.2008.10.035
Pourbaix M, M, (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, London
Branzoi V, Golgovici F, Branzoi F (2002) Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Mater Chem Phys 78:122–131. https://doi.org/10.1016/S0254-0584(02)00222-5
Boulkroune M, Chibani A (2012) 2-Thiophene carboxaldehyde as corrosion inhibitor for zinc in phosphoric acid solution. Chem Sci Trans 1:355–364. https://doi.org/10.7598/cst2012.4730
Maayta AK, Al-Rawashdeh NAF (2004) Inhibition of acidic corrosion of pure aluminum by some organic compounds. Corros Sci 46:1129–1140. https://doi.org/10.1016/j.corsci.2003.09.009
Vaghasiya Y, Dave R, Chanda S (2011) Phytochemical analysis of some medicinal plants from Western Region of India. Res J Med Plant 5:567–576. https://doi.org/10.3923/rjmp.2011.567.576
James AO, Akaranta O (2009) The inhibition of corrosion of zinc in 2.0 M hydrochloric acid solution with acetone extract of red onion skin. Afr J Pure Appl Chem 3:212–217
Abiola OK, James AO (2010) The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corros Sci 52:661–664. https://doi.org/10.1016/j.corsci.2009.10.026
Krishnaveni K, Ravichandran J (2014) Effect of aqueous extract of leaves of Morinda tinctoria on corrosion inhibition of aluminium surface in HCl medium. Trans Nonferrous Met Soc China 24:2704–2712. https://doi.org/10.1016/S1003-6326(14)63401-4
Oguzie EE (2007) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539. https://doi.org/10.1016/j.corsci.2006.08.009
Ameer MAM, Fekry AM (2015) Corrosion inhibition by naturally occurring Hibiscus sabdariffa plant extract on a mild steel alloy in HCl solution. Turk J Chem 39:1078–1088. https://doi.org/10.3906/kim-1408-69
Boumhara K, Tabyaoui M, Jama C, Bentiss F (2015) Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations. J Ind Eng Chem 29:146–155. https://doi.org/10.1016/j.jiec.2015.03.028
Morton J (1987) Pomegranate. Fruits of Warm Climates. Julia F. Morton, Miami, pp 352–355
Taher-Maddah M, Maheri-Sis N, Salamatdoustnobar R, Ahmadzadeh A (2012) Comparing nutritive value of ensiled and dried pomegranate peels for ruminants using in vitro gas production technique. Scholars Res Library, Annals of Biol Res 3:1942–1946
Venkata C, Prakash S, Prakash I (2011) Bioactive Chemical Constituents from Pomegranate (Punica granatum) Juice, Seed and Peel-A Review. Int J Res Chem Environ 1:1–18
Raman A, Labine P, Quraishi MA (2004) Reviews on Corrosion Science & Technology. NACE International, Houstan
Cizek A (1994) Corrosion inhibitors used in acidizing. Mat Perform 33:56–61
Cruz J, Martinez R, Genesca J, Garcia-Ochoa E (2004) Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media. J Electroanal Chem 566:111–121. https://doi.org/10.1016/j.jelechem.2003.11.018
Behpour M, Ghoreishi SM, Khayatkashani M, Soltani N (2012) Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents. Mater Chem Phys 131:621–633
Chen G, Hou X, Zhang M, Su H, Pang M, Zhang J (2013) Extracts of Punica granatum Linne husk as green and eco-friendly corrosion inhibitors for mild steel in oil fields. Res Chem Intermed 39:3545–3552. https://doi.org/10.1007/s11164-012-0861-x
Mahdi SM (2015) Study the Pomegranate’s Peel Powder as a Natural Inhibitor for Mild Steel Corrosion. Int J Mat Chem Phys 1:74–81
Anitha R, Manjuladevi M, Narmatha M, Sruthi K (2016) Comparitive study and effect of fruit peel extracts of Punica granatum and Citrus sinensis to inhibit corrosion on mild steel by using 1N HCl -A review. Int J Innov Sci Eng Res (IJISER) 3:68–72
Deepa Rani P, Selvaraj S (2010) Inhibitive and adsorption properties of Punica granatum extract on brass in acid media. J Phytol 2:58–64
Jafari H, Danaee I, Eskandari H, Rashvandavei M (2013) Electrochemical and theoretical studies of adsorption and corrosion inhibition of N, N′-bis(2-hydroxyethoxyacetophenone)- 2,2-dimethyl-1,2-propanediimine on low carbon steel (API 5L Grade B) in acidic solution. Ind Eng Chem Res 52:6617–6632. https://doi.org/10.1021/ie400066x
Farsak M, Keles H, Keles M (2015) A new corrosion inhibitor for protection of low carbon steel in HCl solution. Corros Sci 98:223–232. https://doi.org/10.1016/j.corsci.2015.05.036
Scheider W (1975) Theory of the frequency dispersion of electrode polarization. Topology of networks with fractional power frequency dependence. J Phys Chem 79:127–136. https://doi.org/10.1021/j100569a008
Khaled KF, Al-Qahtani MM (2009) The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: Chemical, electrochemical and theoretical studies. Mater Chem Phys 113:150–158. https://doi.org/10.1016/j.matchemphys.2008.07.060
Amin MA, Mohsen Q, Hazzazi OA (2009) Synergistic effect of I− ions on the corrosion inhibition of Al in 1.0 M phosphoric acid solutions by purine. Mater Chem Phys 114:908–914. https://doi.org/10.1016/j.matchemphys.2008.10.057
Lenderink HJW, Linden MVD, De Wit JHW (1993) Corrosion of aluminium in acidic and neutral solutions. Electrochim Acta 38:1989–1992. https://doi.org/10.1016/0013-4686(93)80329-X
Noor EA (2009) Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al–Cu alloy in hydrochloric acid. Mater Chem Phys 114:533–541. https://doi.org/10.1016/j.matchemphys.2008.09.065
Zheng X, Zhang S, Li W, Gong M, Yin L (2015) Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corros Sci 95:168–179. https://doi.org/10.1016/j.corsci.2015.03.012
Valand T, Heusler KE (1983) Reactions at the oxide-electrolyte interface of anodic oxide films on aluminum. J Electroanal Chem 149:71–82. https://doi.org/10.1016/S0022-0728(83)80559-2
Singh AK, Quraishi MA (2010) Effect of Cefazolin on the corrosion of mild steel in HCl solution. Corros Sci 52:152–160. https://doi.org/10.1016/j.corsci.2009.08.050
Abd El Rehim SS, Hassan HH, Amin MA (2001) Corrosion inhibition of aluminum by 1,1(lauryl amido)propyl ammonium chloride in HCl solution. Mater Chem Phys 70:64–72. https://doi.org/10.1016/S0254-0584(00)00468-5
Gerengi H, Sahin HI (2012) Schinopsis iorentzii extract as a green corrosion inhibitor for low carbon steel in 1 M HCl solution. Ind eng chem res 51:780–787. https://doi.org/10.1021/ie201776q
Qu Q, Hao Z, Li L, Bai W, Liu Y, Ding Z (2009) Synthesis and evaluation of Tris-hydroxymethyl-(2-hydroxybenzylidenamino)-methane as a corrosion inhibitor for cold rolled steel in hydrochloric acid. Corros Sci 51:569–574. https://doi.org/10.1016/j.corsci.2008.12.010
Mccafferty E, Hackerman N (1972) Double Layer Capacitance of Iron and Corrosion Inhibition with Polymethylene Diamines. J Electrochem Soc 119:146–154. https://doi.org/10.1149/1.2404150
Deng S, Li X, Xie X (2014) Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corros Sci 80:276–289. https://doi.org/10.1016/j.corsci.2013.11.041
Yadav DK, Quraishi MA, Maiti B (2012) Inhibition effect of some benzylidenes on mild steel in 1 M HCl: An experimental and theoretical correlation. Corros Sci 55:254–266. https://doi.org/10.1016/j.corsci.2011.10.030
Gurten AA, Kayakirilmaz K, Erbil M (2007) The effect of thiosemicarbazide on corrosion resistance of steel reinforcement in concrete. Constr Build Mater 21:669–676. https://doi.org/10.1016/j.conbuildmat.2005.12.010
Solmaz R, Kardas G, Çulha M, Yazici B, Erbil M (2008) Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim Acta 53:5941–5952. https://doi.org/10.1016/j.electacta.2008.03.055
Bouklah M, Benchat N, Aouniti A, Hammouti B, Benkaddour M, Lagrenée M, Vezin H, Bentiss F (2004) Effect of the substitution of an oxygen atom by sulphur in a pyridazinic molecule towards inhibition of corrosion of steel in 0.5 M H2SO4 medium. Prog Org Coat 51:118–124. https://doi.org/10.1016/j.porgcoat.2004.06.005
Pretsch E, Bühlmann P, Badertscher M (2009) Structure Determination of Organic Compounds: Tables of Spectral Data. Springer Verlag, Berlin, Heidelberg, Germany
Salem NM, Albanna LS, Awwad AM (2017) Nano-structured zinc sulfide to enhance Cucumis sativu (Cucumber) plant growth. ARPN J Agric Biol Sci 12:167–173