Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher

K. Yugender Goud1,2, Akhtar Hayat1,3, M. Satyanarayana2, Vanish Kumar2, Gaëlle Catanante1, K. Vengatajalabathy Gobi2, Jean Louis Marty1
1BAE Laboratory, Université de Perpignan Via Domitia, Perpignan, France
2Department of Chemistry, National Institute of Technology, Warangal, India
3Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu N, Nie D, Zhao Z et al (2015) Ultrasensitive immunoassays based on biotin–streptavidin amplified system for quantitative determination of family zearalenones. Food Control 57:202–209. https://doi.org/10.1016/j.foodcont.2015.03.049

Wang Y, Li Z, Wang J et al (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212. https://doi.org/10.1016/j.tibtech.2011.01.008

Vashist SK, Luong JHT (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon N Y 84:519–550. https://doi.org/10.1016/j.carbon.2014.12.052

Song Y, Luo Y, Zhu C et al (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212. https://doi.org/10.1016/j.bios.2015.07.002

Wu S, He Q, Tan C et al (2013) Graphene-based electrochemical sensors. Small 9:1160–1172. https://doi.org/10.1002/smll.201202896

Wang L, Zhu J, Han L et al (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6:6659–6666. https://doi.org/10.1021/nn300997f

Dong H, Gao W, Yan F et al (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517. https://doi.org/10.1021/ac100852z

Lin W, Tian B, Zhuang P et al (2016) Graphene-based fluorescence-quenching-related Fermi level elevation and electron-concentration surge. Nano Lett 16:5737–5741. https://doi.org/10.1021/acs.nanolett.6b02430

Lu C, Yang H, Zhu C et al (2009) A graphene platform for sensing biomolecules. Angew Chem 121:4879–4881. https://doi.org/10.1002/ange.200901479

Xing X, Liu X, Yue-He, et al (2012) Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosens Bioelectron 37:61–67. doi: https://doi.org/10.1016/j.bios.2012.04.037

Bai Y, Feng F, Zhao L et al (2014) A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 139:1843. https://doi.org/10.1039/c4an00084f

Cao L, Cheng L, Zhang Z et al (2012) Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. Lab Chip 12:4864. https://doi.org/10.1039/c2lc40564d

Kushwaha HS, Sao R, Vaish R (2014) Label free selective detection of estriol using graphene oxide-based fluorescence sensor. J Appl Phys 116:34701. https://doi.org/10.1063/1.4890024

He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nano 4:2054. https://doi.org/10.1039/c2nr12061e

Song Y, Li W, Duan Y et al (2014) Nicking enzyme-assisted biosensor for salmonella enteritidis detection based on fluorescence resonance energy transfer. Biosens Bioelectron 55:400–404. https://doi.org/10.1016/j.bios.2013.12.053

Gao L, Li Q, Li R et al (2015) Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. Nano 7:10903–10907. https://doi.org/10.1039/C5NR01187F

Chang H, Tang L, Wang Y et al (2010) Graphene fluorescence resonance energy transfer Aptasensor for the thrombin detection. Anal Chem 82:2341–2346. https://doi.org/10.1021/ac9025384

Wu S, Duan N, Ma X et al (2012) Multiplexed fluorescence resonance energy transfer Aptasensor between Upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84:6263–6270. https://doi.org/10.1021/ac301534w

Zhang C, Yuan Y, Zhang S et al (2011) Biosensing platform based on fluorescence resonance energy transfer from Upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50:6851–6854. https://doi.org/10.1002/anie.201100769

Zeng X, Ma S, Bao J et al (2013) Using graphene-based Plasmonic nanocomposites to quench energy from quantum dots for signal-on Photoelectrochemical Aptasensing. Anal Chem 85:11720–11724. https://doi.org/10.1021/ac403408y

Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47:4661. https://doi.org/10.1039/c1cc10597c

Yu Y, Cao Q, Zhou M, Cui H (2013) A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron 43:137–142. https://doi.org/10.1016/j.bios.2012.12.018

Lu Z, Chen X, Wang Y et al (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578. https://doi.org/10.1007/s00604-014-1360-0

Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon. https://doi.org/10.1016/j.carbon.2012.02.038

Cai R, Rao W, Zhang Z et al (2014) An imprinted electrochemical sensor for bisphenol a determination based on electrodeposition of a graphene and ag nanoparticle modified carbon electrode. Anal Methods 6:1590. https://doi.org/10.1039/c3ay42125b

Murphy CB, Zhang Y, Troxler T et al (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer Chemosensors. J Phys Chem B 108:1537–1543. https://doi.org/10.1021/jp0301406

Zu F, Yan F, Bai Z et al (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

Goud KY, Hayat A, Catanante G, Satyanarayana M, Gobi KV, Marty JL (2017) An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim Acta 244:96–103. https://doi.org/10.1016/j.electacta.2017.05.089

Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212. https://doi.org/10.1007/s12274-008-8021-8

Sheng L, Ren J, Miao Y et al (2011) PVP-coated graphene oxide for selective determination of ochratoxin a via quenching fluorescence of free aptamer. Biosens Bioelectron 26:3494–3499. https://doi.org/10.1016/j.bios.2011.01.032

Fang G, Fan C, Liu H et al (2014) A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Adv 4:2764–2771. https://doi.org/10.1039/C3RA45172K

Chen X, Huang Y, Duan N et al (2013) Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem 405:6573–6581. https://doi.org/10.1007/s00216-013-7085-9