Approximation of variational eigenvalue problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Solov’ev, S.I., Approximation of the Spectrum of a Compact Operator, in Setochnye metody dlya kraevykh zadach i prilozheniya (Grid Methods for Boundary Value Problems and Applications), Kazan, 2007, pp. 253–256.
Solov’ev, S.I., The Bubnov-Galerkin Method with Perturbations for Spectral Problems, in Issledovaniya po prikladnoi matematike i informatike (Investigation on Applied Mathematics and Computer Science), Kazan, 2006, no. 26, pp. 95–100.
Solov’ev, S.I., Finite-Element Method for Nonself-Adjoint Spectral Problems, Uch. Zapiski Kazan. Gos. Univ. Ser. Fiz.-Mat. Nauki, 2006, vol. 148, no. 4, pp. 51–62.
Solov’ev, S.I., Finite-Element Method for Symmetric Eigenvalue Problems with a Nonlinear Degeneration of Parameter, Cand. Sci. (Phys.-Math.) Dissertation, Kazan, 1990.
Solov’ev, S.I., Error of the Bubnov-Galerkin Method with Perturbations for Symmetric Spectral Problems with Nonlinear Occurrence of the Parameter, Zh. Vychisl. Mat. Mat. Fiz., 1992, vol. 32, no. 5, pp. 675–691.
Solov’ev, S.I., Approximation of Symmetric Spectral Problems with Nonlinear Occurrence of the Parameter, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10, pp. 60–68.
Solov’ev, S.I., Error Estimates for the Finite-Element Method for Symmetric Spectral Problems with Nonlinear Occurrence of the Parameter, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 9, pp. 70–77.
Solov’ev, S.I., The Finite Element Method for Symmetric Eigenvalue Problems with Nonlinear Occurrence of the Spectral Parameter, Zh. Vychisl. Mat. Mat. Fiz., 1997, vol. 37, no. 11, pp. 1311–1318.
Vainikko, G.M., Convergence Rate of Approximation Methods in Eigenvalue Problems, Zh. Vychisl. Mat. Mat. Fiz., 1967, vol. 7, no. 5, pp. 977–987.
Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., et al., Priblizhennoe reshenie operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.
Fix, G.J., Effects of Quadrature Errors in Finite Element Approximation of Steady State, Eigenvalue and Parabolic Problems, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, New York, 1972, pp. 525–556.
Banerjee, U. and Osborn, J.E., Estimation of the Effect of Numerical Integration in Finite Element Eigenvalue Approximation, Numer. Math., 1990, vol. 56, pp. 735–762.
Solov’ev, S.I., Investigation of the Accuracy of Grid Approximations of the FEM with Numerical Integration for an Eigenvalue Problem, in Primenenie informatiki i vychislitel’noi tekhniki pri reshenii narodnokhozyaistvennykh zadach (Application of Computer Science and Computational Technique for the Solution of Economic Problems), Minsk, 1989, pp. 127–128.
Solov’ev, S.I., Superconvergence of Finite-Element Approximations to Eigenfunctions, Differ. Uravn., 1994, vol. 30, no. 7, pp. 1230–1238.
Solov’ev, S.I., Superconvergence of Finite-Element Approximations to Eigenspaces, Differ. Uravn., 2002, vol. 38, no. 5, pp. 710–711.
Mikhlin, S.G., Lineinye uravneniya v chastnykh proizvodnykh (Linear Partial Differential Equations), Moscow: Vyssh. Shkola, 1977.
Trenogin, V.A., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1980.
Mikhailov, V.P., Differentsial’nye uravneniya v chastnykh proizvodnykh (Partial Differential Equations), Moscow, 1983.
Ciarlet, Ph., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1977. Translated under the title Metod konechnykh elementov dlya ellipticheskikh zadach, Moscow: Mir, 1980.