Approximation of nonconical preference relations in multiple-criteria decision problems

Trabajos de Investigacion Operativa - Tập 7 - Trang 43-50 - 1992
Ma de los Ángeles de Cal1
1Dpode Estadística e Investigación Operativa, Universidad de Santiago de Compostela, Santiago, Espana

Tóm tắt

Our work field is Multiple-Criteria Decision Making Problems. We study the binary relations, no necessarily conical, that represent the decisor’s preferences in the Objective or Outcome Space, we «approach» them by using cones and we explore under what conditions this «approximation» can recover the entire information of these binary relations. We also give conditions for a point to be maximal in the Objective Space by using this approximation.

Tài liệu tham khảo

BAZARAA, M. S., and SHETTY, C. M. (1976):Foundations of Optimization, Berlin, Springer-Verlag. CASARES DE CAL, M. A. (1989):Problemas de Decisión Multicriterio con Sistemas de Preferencia no cónicos, tesis doctoral, Universidad de Santiago de Compostela. COLADAS URÍA, L. (1979):Problemas Multiobjetivo: Estructuras de Dominación, tesis doctoral, Universidad de Santiago de Compostela. HAZEN, G. B., and MORIN, T. L. (1983): «Optimality Conditions in nonconical Multiple-Objetive Programming»,J. Optimization Theory Appl., Vol. 40, n.o 1, 25–60. MANGASARIAN, O. L. (1969):Nonlinear Programming, New York, McGraw-Hill. ROCKAFELLAR, R. T. (1970):Convex Analysis, Princeton University Press. YU, P. L. (1973): «Introduction to Domination Structures in Multicriteria Decision Problems»,Multiple Criteria Decision Making (Cochrane, J. L.; Zeleny, M., Eds.), University of South Carolina Press, 249–261. YU, P. L. (1985):Multiple-Criteria Decision Making, New York, Plenum Press.