Approximation by genuine Gupta–Srivastava operators
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas - Tập 113 - Trang 2495-2505 - 2019
Tóm tắt
In the present paper, we consider new operators, which is defined by Gupta and Srivastava (Eur J Pure Appl Math 11(3):575–579, 2018). They considered a general sequence of positive linear operators and gave the modified form of their previous operators (Neer et al. in Math Comput Model 37:1307–1315, 2003). As these operators preserve linear functions, we call these operators as genuine Gupta–Srivastava operators. Here we discuss some basic properties, direct results and rate of convergence of functions of bounded variation and weighted approximation.
Tài liệu tham khảo
Acu, A.M., Gupta, V.: Direct results for certain summation-integral type Baskakov-Szász operators. Results Math. 72(3), 1161–1180 (2017)
Acu, A.M., Agrawal, P.N., Neer, T.: Approximation properties of the modified Stancu operators. Numer. Funct. Anal. Optim. 38(3), 279–292 (2017)
Bustamante, J.: Bernstein Operators and Their Properties. Birkhäuser, Basel (2017)
Deo, N.: Faster rate of convergence on Srivastava-Gupta operators. Appl. Math. Comput. 218(21), 10486–10491 (2012)
Deo, N., Dhamija, M.: Generalized positive linear operators based on PED and IPED. Iran J Sci Technol Trans Sci (2018). https://doi.org/10.1007/s40995-017-0477-5
DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)
Gadjiev, A.D., On, P.P.: Korovkin type theorems. Math. Zametki. 205, 781–786 (1976)
Ibikli, E., Gadjieva, E.A.: The order of approximation of some unbounded function by the sequence of positive linear operators. Turkish J. Math. 193, 331–337 (1995)
Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, Heidelberg (2016)
Gupta, V.: An estimate on the convergence of Baskakov–Bézier operators. J. Math. Anal. Appl. 312(1), 280–288 (2005)
Gupta, V., Rassias, ThM, Agrawal, P.N., Acu, A.M.: Recent Advances in Constructive Approximation Theory. Springer, Cham (2018)
Ispir, N.: On modified Baskakov operators on weighted spaces. Turkish J. Math. 25(3), 355–365 (2001)
Ispir, N., Yüksel, I.: On the Bézier variant of Srivastava-Gupta operators. Appl. Math. Notes 5, 129–137 (2005)
Maheswari(Sharma), P.: On modified Srivastava-Gupta operators. Filomat 29(6), 1173–1177 (2015)
Neer, T., Ispir, N., Agrawal, P.N.: Bézier variant of modified Srivastava-Gupta operators. Revista de la Unión Matemat́ica Argentina 58(2), 199–214 (2017)
Srivastava, H.M., Gupta, V.: A Certain family of summation-integral type operators. Math. Comput. Model. 37, 1307–1315 (2003)
Gupta, V., Srivastava, H.M.: A general family of the Srivastava-Gupta operators preserving linear functions. Eur. J. Pure Appl. Math. 11(3), 575–579 (2018)
Verma, D.K., Agrawal, P.N.: Convergence in simultaneous approximation for Srivastava-Gupta operators. Math. Sci. (2012). https://doi.org/10.1186/2251-7456-6-22
Yadav, R.: Approximation by modified Srivastava-Gupta operators. Appl. Math. Comput. 226, 61–66 (2014)