Approximating the minimum weight spanning tree of a set of points in the Hausdorff metric

Computational Geometry - Tập 43 - Trang 94-98 - 2010
Victor Alvarez1, Raimund Seidel1
1Fachrichtung Informatik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany

Tài liệu tham khảo

Agarwal, 1991, Euclidean minimum spanning trees and bichromatic closest pairs, Discrete Comput. Geom., 6, 407, 10.1007/BF02574698 Agarwal, 2004, Approximating extent measures of points, J. ACM, 51, 606, 10.1145/1008731.1008736 Alt, 2000, Discrete geometric shapes: Matching, interpolation, and approximation, 121 Arora, 1998, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, J. ACM, 45, 753, 10.1145/290179.290180 Kenneth L. Clarkson, Fast expected-time and approximation algorithms for geometric minimum spanning trees, in: STOC '84: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, 1984, pp. 342–348 Krznaric, 1999, Minimum spanning trees in d dimensions, Nordic J. of Computing, 6, 446 Mitchell, 1999, Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems, SIAM J. Comput., 28, 1298, 10.1137/S0097539796309764 Lee, 1980, Two-dimensional Voronoi diagrams in the Lp-metric, J. ACM, 27, 604, 10.1145/322217.322219