Approximating the Permanent via Importance Sampling with Application to the Dimer Covering Problem
Tài liệu tham khảo
Ando, 1989, Majorization, doubly stochastic matrices and comparison of eigenvalues, Linear Algebra Appl., 118, 163, 10.1016/0024-3795(89)90580-6
Bapat, 1986, Applications of an inequality in information theory to matrices, Linear Algebra Appl., 78, 107, 10.1016/0024-3795(86)90018-2
Barvinok, 1997, Computing mixed discriminants, mixed volumes and permanents, Discrete Comput. Geom., 18, 205, 10.1007/PL00009316
Bregman, 1967, Proof of convergence of Sheleikhovskii's method for a problem with transportation constraints, Zh. Vychsl. Mat. Mat. Fiz., 7, 147
M. Ciucu, An improved upper bound for the three-dimensional dimer problem, to appear.
Fowler, 1937, Statistical theory of perfect solutions, Trans. Faraday Soc., 33, 1271, 10.1039/tf9373301272
Frenkel, 1996, Understanding Molecular Simulation
Hammersley, 1968, An improved lower bound for the multidimensional dimer problem, Proc. Camb. Phil. Soc., 64, 455, 10.1017/S030500410004305X
Hammersley, 1966, Existence theorems and Monte Carlo methods for the monomer–dimer problem, Research Papers in Statistics: Festschrift for J. Neyman, 125
Hammersley, 1964, Monte Carlo Methods, 10.1007/978-94-009-5819-7
Hopcroft, 1973, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput., 2, 225, 10.1137/0202019
Jerrum, 1987, Two-dimensional monomer–dimer systems are computationally intractible, J. Stat. Phys., 48, 121, 10.1007/BF01010403
Jerrum, 1989, Approximating the permanent, SIAM J. Comput., 18, 1149, 10.1137/0218077
Karmarkar, 1993, A Monte Carlo algorithm for estimating the permanent, SIAM J. Comput., 22, 284, 10.1137/0222021
Kastelyn, 1961, The statistics of dimers on a lattice, Physica, 27, 1209, 10.1016/0031-8914(61)90063-5
Kenyon, 1996, Approximating the number of monomer–dimer coverings of a lattice, J. Stat. Phys., 83, 637, 10.1007/BF02183743
N. Linial, A. Samorodnitsky, and, A. Wigderson, A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents, to appear.
London, 1971, On matrices with double stochastic pattern, J. Math. Anal. Appl., 34, 648, 10.1016/0022-247X(71)90104-1
Minc, 1978, An upper bound for the multidimensional dimer problem, Math. Proc. Cambridge Philos. Soc., 83, 461, 10.1017/S0305004100054748
Minc, 1982, Review of the paper “On Lower Bounds for Permanents” by A. Schrijver and W. G. Valiant, Math Rev.
Peressini, 1988, The Mathematics of Nonlinear Programming, 10.1007/978-1-4612-1025-2
Priezzhev, 1981, The statistics of dimers on a three-dimensional lattice. II. An improved lower bound, J. Stat. Phys., 829, 10.1007/BF01010944
Ryser, 1963, Carus Monographs, Combinatorial Mathematics, 14, 10.5948/UPO9781614440147
Sullivan, 1974, A descent method with smooth rotund spaces with applications to approximation in Lp, J. Math. Anal. Appl., 48, 155, 10.1016/0022-247X(74)90223-6
Sinkhorn, 1964, A relationship between arbitrary positive matrices and double stochastic matrices, Ann. Math. Stat., 35, 876, 10.1214/aoms/1177703591
Soules, 1991, The rate of convergence of Sinkhorn balancing, Linear Algebra Appl., 150, 3, 10.1016/0024-3795(91)90157-R
Schrijver, 1998, Counting 1-factors in regular bipartite graphs, J. Combin. Theory B, 72, 122, 10.1006/jctb.1997.1798
Schrijver, 1980, On lower bounds for permanents, Nederl. Akad. Wetensch. Indag. Math., 42, 425, 10.1016/1385-7258(80)90043-8
Temperley, 1961, Dimer problem in statistical mechanics—An exact result, Philos. Mag., 6, 1061, 10.1080/14786436108243366