Approximating fixed points of enriched contractions in Banach spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alghamdi, M., Berinde, V., Shahzad, N.: Fixed point of multivalued nonself almost contractions. J. Appl. Math. 2013, Art. ID 621614 (2013)
Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4(1), 1–9 (1978)
Banach, S.: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. 3, 133–181 (1922)
Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9(1), 43–53 (2004)
Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics, vol. 1912, 2nd edn. Springer, Berlin (2007)
Berinde, V.: Approximating fixed points of implicit almost contractions. Hacet. J. Math. Stat. 41(1), 93–102 (2012)
Berinde, V.: Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces. Carpathian J. Math. 35(3), 293–304 (2019)
Berinde, V.: Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators. An. Univ. Vest Timiş. Ser. Mat.-Inform. 56(2), 13–27 (2018). https://doi.org/10.2478/awutm-2018-0013
Berinde, V., Petric, M.: Fixed point theorems for cyclic non-self single-valued almost contractions. Carpathian J. Math. 31(3), 289–296 (2015)
Berinde, V., Păcurar, M.: Iterative approximation of fixed points of single-valued almost contractions. In: Fixed Point Theory and Graph Theory. Elsevier, Amsterdam, pp. 29–97 (2016)
Berinde, V., Păcurar, M.: Fixed point theorems for Kannan type mappings with applications to split feasibility and variational inequality problems (submitted)
Berinde, V., Păcurar, M.: Fixed point theorems for Chatterjea type mappings in Banach spaces (submitted)
Borwein, J., Reich, S., Shafrir, I.: Krasnoselski–Mann iterations in normed spaces. Can. Math. Bull. 35(1), 21–28 (1992)
Caccioppoli, R.: Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale. Rend. Accad. Lincei 11, 794–799 (1930)
Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. New York: Marcel Dekker, Inc. (1984)
Maia, M.: Un’osservazione sulle contrazioni metriche. Rend. Semin. Mat. Univ. Padova 40, 139–143 (1968)
Păcurar, M.: Iterative Methods for Fixed Point Approximation. Editura Risoprint, Cluj-Napoca (2009)
Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)
Rus, I.A.: Generalized Contractions and Applications. Cluj-University Press, Cluj-Napoca (2001)
Rus, I.A.: Weakly Picard operators and applications. Semin. Fixed Point Theory Cluj-Napoca 2, 41–57 (2001)
Rus, I.A., Petruşel, A., Petruşel, G.: Fixed Point Theory. Cluj University Press, Cluj-Napoca (2008)
Shioji, N., Suzuki, T., Takahashi, W.: Contractive mappings, Kannan mappings and metric completeness. Proc. Am. Math. Soc. 126(10), 3117–3124 (1998)
Subrahmanyam, P.V.: Remarks on some fixed-point theorems related to Banach’s contraction principle. J. Math. Phys. Sci. 8, 445–457 (1974). errata, ibid. 9 (1975), 195
Suzuki, T.: Contractive mappings are Kannan mappings, and Kannan mappings are contractive mappings in some sense. Comment. Math. (Prace Mat.) 45(1), 45–58 (2005)
Zeidler, E.: Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization. Springer, New York (1985)