Approximating exact expected utility via portfolio efficient frontiers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26(7), 1487–1503 (2002)
Allais, M.: The foundations of the theory of utility and risk some central points of the discussions at the oslo conference. In: Progress in Utility and Risk Theory. Springer, pp 3–131 (1984)
Bruni, R., Cesarone, F., Scozzari, A., Tardella, F.: A linear risk-return model for enhanced indexation in portfolio optimization. OR Spectr. 37(3), 735–759 (2015)
Bruni, R., Cesarone, F., Scozzari, A., Tardella, F.: On exact and approximate stochastic dominance strategies for portfolio selection. Eur. J. Oper. Res. 259(1), 322–329 (2017)
Cesarone, F., Scozzari, A., Tardella, F.: A new method for mean-variance portfolio optimization with cardinality constraints. Ann. Oper. Res. 205(1), 213–234 (2013)
Cesarone, F., Scozzari, A., Tardella, F.: Linear vs. quadratic portfolio selection models with hard real-world constraints. Comput. Manag. Sci. 12(3), 345–370 (2015)
Cesarone, F., Moretti, J., Tardella, F.: Optimally chosen small portfolios are better than large ones. Econ. Bull. 36(4), 1876–1891 (2016)
Fábián, C.I., Mitra, G., Roman, D.: Processing second-order stochastic dominance models using cutting-plane representations. Math. Program. 130(1), 33–57 (2011)
Gurobi Optimization I: Gurobi optimizer reference manual. http://www.gurobi.com (2015)
Hlawitschka, W.: The empirical nature of taylor-series approximations to expected utility. Am. Econ. Rev. 84(3), 713–719 (1994)
Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)
Kondor, I., Pafka, S., Nagy, G.: Noise sensitivity of portfolio selection under various risk measures. J. Bank. Finance 31(5), 1545–1573 (2007)
Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market. Manag. Sci. 37(5), 519–531 (1991)
Kroll, Y., Levy, H., Markowitz, H.M.: Mean-variance versus direct utility maximization. J. Finance 39(1), 47–61 (1984)
Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38(4), 555–593 (1992)
Levy, H., Markowitz, H.M.: Approximating expected utility by a function of mean and variance. Am. Econ. Rev. 69(3), 308–317 (1979)
Lizyayev, A.: Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements. Ann. Oper. Res. 196(1), 391–410 (2012)
Mansini, R., Ogryczak, W., Speranza, M.G.: Conditional value at risk and related linear programming models for portfolio optimization. Ann. Oper. Res 152(1), 227–256 (2007)
Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Cowles Foundation for Research in Economics at Yale University, Monograph 16. Wiley, New York (1959)
Markowitz, H.M.: Mean-variance approximations to the geometric mean. Ann. Financ. Econ. 7(1), 1–30 (2012)
Markowitz, H.M.: The “Great Confusion” concerning MPT. Aestimatio J Finance 4, 8–27 (2012)
Markowitz, H.M.: Which risk-measure best represents return distributions with large deviations? Int. J. Portf. Anal. Manag. 1(2), 93–111 (2012)
Markowitz, H.M.: Mean-variance approximations to expected utility. Eur. J. Oper. Res. 234(2), 346–355 (2014)
Markowitz, H.M., Blay, K.: Risk-Return Analysis: The Theory and Practice of Rational Investing, vol. 1. McGraw Hill Professional, Nee York (2013)
Meucci, A.: Risk and Asset Allocation. Springer, New York (2009)
Ogryczak, W., Ruszczyński, A.: From stochastic dominance to mean-risk models: semideviations as risk measures. Eur. J. Oper. Res. 116(1), 33–50 (1999)
Ogryczak, W., Ruszczynski, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13(1), 60–78 (2002)
Pulley, L.B.: A general mean-variance approximation to expected utility for short holding periods. J. Financ. Quant. Anal. 16(03), 361–373 (1981)
Roman, D., Mitra, G.: Portfolio selection models: a review and new directions. Wilmott J. 1(2), 69–85 (2009)
Roman, D., Darby-Dowman, K., Mitra, G.: Portfolio construction based on stochastic dominance and target return distributions. Math. Program. 108(2), 541–569 (2006)
Rubinstein, R.: Generating random vectors uniformly distributed inside and on the surface of different regions. Eur. J. Oper. Res. 10(2), 205–209 (1982)
Simaan, Y.: What is the opportunity cost of mean-variance investment strategies? Manag. Sci. 39(5), 578–587 (1993)
Speranza, M.: Linear programming models for portfolio optimization. Finance 14, 107–123 (1993)