Đặc điểm xấp xỉ của các lớp Nikol’skii–Besov $$ {S}_{1,\theta}^rB\left({\mathrm{\mathbb{R}}}^d\right) $$

Springer Science and Business Media LLC - Tập 71 - Trang 1608-1626 - 2020
S. Ya. Yanchenko1, O. Ya. Radchenko2
1Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, Ukraine
2Hnatyuk Ternopil’ National Pedagogic University, Ternopil’, Ukraine

Tóm tắt

Chúng tôi thiết lập các ước lượng chính xác cho sự xấp xỉ của các lớp $$ {S}_{1,\theta}^rB\left({\mathrm{\mathbb{R}}}^d\right) $$ bằng các hàm toàn phần loại mũ sao cho các hỗ trợ của biến đổi Fourier của chúng nằm trong một nhóm siêu parabol. Sai số của sự xấp xỉ được ước lượng trong không gian metric của không gian Lebesgue Lq(ℝd), 1 < q ≤  ∞.

Từ khóa

#xấp xỉ #lớp Nikol’skii–Besov #hàm toàn phần loại mũ #biến đổi Fourier #không gian Lebesgue

Tài liệu tham khảo

H. Wang and Y. Sun, “Approximation of multivariate functions with certain mixed smoothness by entire functions,” Northeast. Math. J., 11, No. 4, 454–466 (1995). H. Wang and Y. Sun, “Approximation of functions in \( \tilde{S_1^rL},{S}_1^rH \) by entire functions,” Approxim. Theory Appl., 15, No. 4, 88–93 (1999). S. Ya. Yanchenko, “Approximation of the classes \( {S}_{1,\theta}^rB\left({\mathrm{\mathbb{R}}}^d\right) \) of functions of many variables by entire functions of a special form,” Ukr. Mat. Zh., 62, No. 8, 1124–1138 (2010); English translation:Ukr. Math. J., 62, No. 8, 1307–1325 (2011). S. Ya. Yanchenko, “Approximation of functions from the classes \( {S}_{p,\theta}^rB \) in the uniform metric,” Ukr. Mat. Zh., 65, No. 5, 698–705 (2013); English translation:Ukr. Math. J., 65, No. 5, 771–779 (2013). S. Ya. Yanchenko, “Estimates for the approximating characteristics of the classes of functions \( {S}_{1,\theta}^rB\left({\mathrm{\mathbb{R}}}^d\right) \) in the uniform metric,” in: “Approximation Theory of Functions and Related Problems,” Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], Kyiv, 10, No. 1 (2013), pp. 328–340. S. M. Nikol’skii, “Functions with predominant mixed derivative satisfying the multiple H¨older condition,” Sib. Mat. Zh., 4, No. 6, 1342–1364 (1963). T. I. Amanov, “Theorems on representation and embedding for the function spaces \( {S}_{p,\theta}^rB\left({\mathrm{\mathbb{R}}}_n\right) \) and \( {S_{p,\theta}^{(r)}}^{\ast }B\left(0\le {x}_j\le 2\pi, j=1,\dots, n\right), \)” Tr. Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965). P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989). P. I. Lizorkin, “Generalized Liouville differentiation and the method of multiplicators in the theory of embeddings of classes of differentiable functions,” Tr. Mat. Inst. Akad. Nauk SSSR, 105, 89–167 (1969). V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981). Y. M. Berezans’kyi, H. F. Us, and Z. G. Sheftel’, Functional Analysis [in Ukrainian], Chyzhykov, Lviv (2014). H. Wang, “Quadrature formulas for classes of functions with bounded mixed derivative or difference,” Sci. China (Ser. A), 40, No. 5, 449–458 (1997). S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian], Nauka, Moscow (1969). V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 1–112 (1986). G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities [Russian translation], Inostrannaya Literatura, Moscow (1948). H. Wang, “Representation and approximation of multivariate function with bounded mixed smoothness by hyperbolic wavelets,” J. Math. Anal. Appl., 291, 698–715 (2004). H.-J. Schmeisser and W. Sickel, “Spaces of functions of mixed smoothness and approximation from hyperbolic crosses,” J. Approxim. Theory, 128, 115–150 (2004). V. N. Temlyakov, “Estimation of the asymptotic characteristics of classes of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 189, 138–168 (1988). A. S. Romanyuk, “Approximation of the Besov classes of periodic functions of several variables in a space Lq,” Ukr. Mat. Zh., 43, No. 10, 1398–1408 (1991); English translation:Ukr. Math. J., 43, No. 10, 1297–1306 (1991). A. S. Romanyuk, “Approximation of the classes \( {B}_{p,\theta}^r \) of periodic multivariable functions by linear methods and the best approximations,” Mat. Sb., 195, No. 2, 91–116 (2004). A. S. Romanyuk, “Best trigonometric approximations of the classes of periodic multivariate functions in the uniform metric,” Mat. Zametki, 82, No. 2, 247–261 (2007). É. M. Galeev, “Approximation of the classes of periodic functions of several variables by kernel operators,” Mat. Zametki, 47, No. 3, 32–41 (1990). A. S. Romanyuk, Approximating Characteristics of the Classes of Periodic Multivariate Functions [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2012). D. Dũng, V. N. Temlyakov, and T. Ullrich, Hyperbolic Cross Approximation, Preprint arXiv:1601.03978v3 [math.NA] (2017). N. N. Pustovoitov, “Representation and approximation of periodic multivariable functions with given mixed modulus of continuity,” Anal. Math., 20, 35–48 (1994). N. N. Pustovoitov, “Approximation of multidimensional functions with given majorant of the mixed moduli of continuity,” Mat. Zametki, 65, No. 1, 107–117 (1999). Y. Sun and H. Wang, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness,” Tr. Mat. Inst. Ros. Akad. Nauk, 219, 356–377 (1997). S. A. Stasyuk, “Best approximations and Kolmogorov and trigonometric widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables,” Ukr. Mat. Zh., 56, No. 11, 1557–1568 (2004); English translation:Ukr. Math. J., 56, No. 11, 1849–1863 (2004). S. A. Stasyuk and S. Ya. Yanchenko, “Approximation of functions from Nikolskii–Besov type classes of generalized mixed smoothness,” Anal. Math., 41, 311–334 (2015). S. Ya. Yanchenko, “Approximations of classes \( {B}_{p,\theta}^{\varOmega } \) of functions of many variables by entire functions in the space Lq(ℝd),” Ukr. Mat. Zh., 62, No. 1, 123–135 (2010); English translation:Ukr. Math. J., 62, No. 1, 136–150 (2010).