Approximately Coloring Graphs Without Long Induced Paths

Maria Chudnovsky1, Oliver Schaudt2,3, Sophie Spirkl4,1, Maya Stein5, Mingxian Zhong6,7
1Princeton University, Princeton, USA
2RWTH Aachen, Aachen, Germany
3Universität zu Köln, Cologne, Germany
4Rutgers University, Piscataway, USA
5Universidad de Chile, Santiago, Chile
6Lehman College, CUNY, Bronx, USA
7Columbia University, New York, USA

Tóm tắt

It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on t vertices, for fixed t. We propose an algorithm that, given a 3-colorable graph without an induced path on t vertices, computes a coloring with $$\max \left\{ 5,2\left\lceil \frac{t-1}{2}\right\rceil -2\right\} $$ many colors. If the input graph is triangle-free, we only need $$\max \left\{ 4,\left\lceil \frac{t-1}{2}\right\rceil +1\right\} $$ many colors. The running time of our algorithm is $$O((3^{t-2}+t^2)m+n)$$ if the input graph has n vertices and m edges.

Từ khóa


Tài liệu tham khảo

Brakensiek, J., Guruswami, V.: New hardness results for graph and hypergraph colorings. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016) Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-coloring and list three-coloring graphs without induced paths on seven vertices. Combinatorica 38(4), 779–801 (2018) Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite programming relaxations. In: 48th Annual IEEE Symposium on Foundations of Computer Science (2007) Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring \(P_6\)-free graphs. I. Extending an excellent precoloring. arXiv preprint arXiv:1802.02282 (2018) Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring \(P_6\)-free graphs. II. Finding an excellent precoloring. arXiv preprint arXiv:1802.02283 (2018) Chuzhoy, J.: Private communication (2015) Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. SIAM J. Comput. 39, 843–873 (2009) Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Comput. Sci. 43, 337–343 (1986) Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congressus Numerantium 26, 125–157 (1979) Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness. WH Freemann, New York (1979) Groenland, C., Okrasa, K., Rzążewski, P., Scott, A., Seymour, P., Spirkl, S.: \( H \)-colouring \( P_t \)-free graphs in subexponential time. arXiv preprint arXiv:1803.05396 (2018) Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2017) Gyárfás, A.: Problems from the world surrounding perfect graphs. Appl. Math. 19(3–4), 413–441 (1987) Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding \(k\)-colorability of \(P_5\)-free graphs in polynomial time. Algorithmica 57(1), 74–81 (2010) Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981) Huang, S.: Improved complexity results on \(k\)-coloring \(P_t\)-free graphs. Eur. J. Comb. 51, 336–346 (2016) Huang, S., Johnson, M., Paulusma, D.: Narrowing the complexity gap for colouring \((C_s, P_t)\)-free graphs. Comput. J. 58(11), 3074–3088 (2015) Kamiński, M., Lozin, V.: Coloring edges and vertices of graphs without short or long cycles. Contrib. Discrete Math. 2, 61–66 (2007) Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972) Kawarabayashi, K., Thorup, M.: Coloring 3-Colorable Graphs with \(o (n^{1/5})\) Colors. LIPIcs-Leibniz International Proceedings in Informatics, vol. 25. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Wadern (2014) Král, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. Proc. WG 2001, 254–262 (2001) Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. J. Algorithms 4, 35–44 (1983) Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz 29(3), 3–10 (1976)