Approximate symmetry-breaking in the independent particle model of monocyclic completely conjugated polyenes
Tóm tắt
We examine the singlet stability of symmetry adapted, restricted Hartree-Fock (RHF) solutions and the implied symmetry breaking for various planar, π-electron systems with conjugated double bonds as described by the semiempirical Pariser-Parr-Pople Hamiltonian. In particular, we explore the energy and charge- density waves (CDWs) in various real and hypothetical structures that result by a systematic deformation of the nuclear framework: we start with a highly symmetric cyclic polyene C
N
H
N
having a nondegenerate ground state (N = 2n = 4ν + 2, ν = 1, 2,...), whose sites form a regular N-gon (D
Nh
point group), and proceed to structures with lower symmetry (D
6h
, D
3h
, D
2h
point groups), or with only the planar symmetry of the conjugated π-electron system (C
1h
). The objective of this study is to explore the phenomenon that could be referred to as a breaking of an approximate symmetry or an implied symmetry breaking.
Tài liệu tham khảo
J. Paldus, in Theory and Applications of Computational Chemistry: The First Forty Years, eds. by C.F. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria), Chap. 7 (Elsevier, Amsterdam, 2005) pp. 115–147
Froese-Fischer C. (1977) The Hartree-Fock Method for Atoms: A Numerical Approach. Wiley, New York
Kowalski K., Jankowski K. (1998) Phys. Rev. Lett. 81: 1195
Löwdin P.-O. (1963) Rev. Mod. Phys. 35: 496
Fukutome H. (1981) Int. J. Quant. Chem. 20: 955
J. Paldus, in Self-Consistent Field: Theory and Applications, eds. by R. Carbó, M. Klobukowski (Elsevier, Amsterdam, 1990) pp. 1–45
J.L. Stuber, J. Paldus, in Fundamental World of Quantum Chemistry, eds. by R.J. Brändas, E.S. Kryachko, vol. I (Kluwer, Dordrecht, 2003) pp. 67–139
Koutecký J. (1967) J. Chem. Phys. 46: 2443
Thouless D.J. (1961) The Quantum Mechanics of Many-Body Systems. Academic, New York
Čížek J. (1967) J. Paldus, J. Chem. Phys. 47: 3976
Paldus J., Čížek J. (1970) J. Polymer Sci. C 29: 199
Koutecký J., Paldus J., Čížek J. (1985) J. Chem. Phys. 83: 1722
Čížek J., Paldus J. (1970) J. Chem. Phys. 53: 821
Paldus J., Čížek J. (1970) Phys. Rev. A 2: 2268
Čížek J., Paldus J. (1971) Phys. Rev. A 3: 525
Bénard M. (1979) J. Chem. Phys. 71: 2546
Bénard M., Paldus J. (1980) J. Chem. Phys. 72: 6546
Paldus J., Čížek J. (1985) Can. J. Chem. 63: 1803
Bénard M., Laidlaw W.G., Paldus J. (1985) Can. J. Chem. 63: 1797
Bénard M., Laidlaw W.G., Paldus J. (1986) Chem. Phys. 103: 43
Paldus J., Čížek J. (1969) Chem. Phys. Lett. 3: 1
Paldus J., Čížek J. (1970) J. Chem. Phys. 52: 2919
Paldus J., Čížek J. (1971) J. Chem. Phys. 54: 2293
Paldus J., Veillard A. (1977) Chem. Phys. Lett. 50: 6
Paldus J., Veillard A. (1978) Mol. Phys. 35: 445
Paldus J., Čížek J., Keating B.A. (1973) Phys. Rev. A 8: 640
Parr R.G. (1963) The Quantum Theory of Molecular Electronic Structure. Benjamin, New York
Roothaan C.C.J. (1951) Rev. Mod. Phys. 25: 69
Davidson E.R., Borden W.T. (1983) J. Phys. Chem. 87: 4783
Allen W.D., Horner D.A., Dekock R.L., Remington R.B, Schaefer III H.F. (1989) Chem. Phys. 133: 11
Paldus J., Chin E. (1983) Intern. J. Quant. Chem. 24: 373
Paldus J., Chin E., Grey M.G. (1983) Intern. J. Quant. Chem. 24: 395
Pauncz R., Paldus J. (1983) Intern. J. Quant. Chem. 24: 411
Paldus J., Takahashi M. (1984) Intern. J. Quant. Chem. 25: 423
Takahashi M., Paldus J. (1984) Intern. J. Quant. Chem. 26: 349
Takahashi M., Paldus J. (1985) Intern. J. Quant. Chem. 28: 459
Barnes L.A., Lindh R. (1994) Chem. Phys. Lett. 223: 207
Asmis K.R., Taylor T.R., Neumark D.M. (1999) J. Chem. Phys. 111: 8838
Gwaltney S.R., Head-Gordon M. (2001) Phys. Chem. Chem. Phys. 3: 4495
Li X., Paldus J. (2007) J. Chem. Phys. 126: 224304
Holka F., Neogrády P., Urban M., Paldus J. (2007) Coll. Czech. Chem. Commun. 72: 197
J. Paldus, in Theoretical Chemistry: Advances and Perspectives, eds. by E. Eyring, D.J. Henderson, vol. 2 (Academic, New York, 1975) pp. 131–290
Mataga N., Nishimoto K. (1957) Z. Phys. Chem. (Frankfurt) 13: 140
Goeppert-Mayer M., Sklar A.L. (1938) J. Chem. Phys. 6: 635
Lieb E.H., Wu F.Y. (1968) Phys. Rev. Lett. 20: 1445
Hashimoto K., Čížek J., Paldus J. (1988) Intern. J. Quant. Chem. 34: 407
Čížek J., Hashimoto K., Paldus J., Takahashi M. (1991) Israel J. Chem. 31: 423
Paldus J., Čížek J. (1969) Prog. Theor. Phys. (Kyoto) 42: 769
Paldus J., Takahashi M., Cho R.W.H. (1984) Phys. Rev. B 30: 4267
Takahashi M., Paldus J. (1985) Phys. Rev. B 31: 5152
Sondheimer F. (1967) Proc. R. Soc. London A 297: 173
Sondheimer F. (1972) Acc. Chem. Res. 5: 81
Sondheimer F. (1974) Chimia 28: 163
Gerratt P.J. (1986) Aromaticity. Wiley, New York
Lloyd D., (1989) The Chemistry of Conjugated Cyclic Compounds To Be or Not To Be Like Benzene? Wiley, New York
Fukutome H. (1968) Prog. Theor. Phys. (Kyoto) 40: 998–1227
Harris R.A., Falicov L.M. (1969) J. Chem. Phys. 51: 5034, and references therein
Cazes D., Salem L., Tric C. (1974) J. Polym. Sci. C 29: 494
VogelE., Roth H.D. (1964) Angew. Chem. Int. Ed. 3: 228
R.M. McQuilkin, B.W. Metcalf, F. Sondheimer, Chem. Commun, 338 (1971)
Sondheimer F., Wolovsky R., Amiel Y. (1962) J. Am. Chem. Soc. 84: 274
Sondheimer F., Gaoni Y. (1962) J. Am. Chem. Soc. 84: 3520