Approximate symmetry-breaking in the independent particle model of monocyclic completely conjugated polyenes

Journal of Mathematical Chemistry - Tập 44 - Trang 88-120 - 2007
Josef Paldus1,2, Gabriela Thiamová1
1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
2Department of Chemistry, and Guelph-Waterloo Center for Graduate Work in Chemistry – Waterloo Campus, University of Waterloo, Waterloo, Canada

Tóm tắt

We examine the singlet stability of symmetry adapted, restricted Hartree-Fock (RHF) solutions and the implied symmetry breaking for various planar, π-electron systems with conjugated double bonds as described by the semiempirical Pariser-Parr-Pople Hamiltonian. In particular, we explore the energy and charge- density waves (CDWs) in various real and hypothetical structures that result by a systematic deformation of the nuclear framework: we start with a highly symmetric cyclic polyene C N H N having a nondegenerate ground state (N = 2n = 4ν + 2, ν = 1, 2,...), whose sites form a regular N-gon (D Nh point group), and proceed to structures with lower symmetry (D 6h , D 3h , D 2h point groups), or with only the planar symmetry of the conjugated π-electron system (C 1h ). The objective of this study is to explore the phenomenon that could be referred to as a breaking of an approximate symmetry or an implied symmetry breaking.

Tài liệu tham khảo

J. Paldus, in Theory and Applications of Computational Chemistry: The First Forty Years, eds. by C.F. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria), Chap. 7 (Elsevier, Amsterdam, 2005) pp. 115–147 Froese-Fischer C. (1977) The Hartree-Fock Method for Atoms: A Numerical Approach. Wiley, New York Kowalski K., Jankowski K. (1998) Phys. Rev. Lett. 81: 1195 Löwdin P.-O. (1963) Rev. Mod. Phys. 35: 496 Fukutome H. (1981) Int. J. Quant. Chem. 20: 955 J. Paldus, in Self-Consistent Field: Theory and Applications, eds. by R. Carbó, M. Klobukowski (Elsevier, Amsterdam, 1990) pp. 1–45 J.L. Stuber, J. Paldus, in Fundamental World of Quantum Chemistry, eds. by R.J. Brändas, E.S. Kryachko, vol. I (Kluwer, Dordrecht, 2003) pp. 67–139 Koutecký J. (1967) J. Chem. Phys. 46: 2443 Thouless D.J. (1961) The Quantum Mechanics of Many-Body Systems. Academic, New York Čížek J. (1967) J. Paldus, J. Chem. Phys. 47: 3976 Paldus J., Čížek J. (1970) J. Polymer Sci. C 29: 199 Koutecký J., Paldus J., Čížek J. (1985) J. Chem. Phys. 83: 1722 Čížek J., Paldus J. (1970) J. Chem. Phys. 53: 821 Paldus J., Čížek J. (1970) Phys. Rev. A 2: 2268 Čížek J., Paldus J. (1971) Phys. Rev. A 3: 525 Bénard M. (1979) J. Chem. Phys. 71: 2546 Bénard M., Paldus J. (1980) J. Chem. Phys. 72: 6546 Paldus J., Čížek J. (1985) Can. J. Chem. 63: 1803 Bénard M., Laidlaw W.G., Paldus J. (1985) Can. J. Chem. 63: 1797 Bénard M., Laidlaw W.G., Paldus J. (1986) Chem. Phys. 103: 43 Paldus J., Čížek J. (1969) Chem. Phys. Lett. 3: 1 Paldus J., Čížek J. (1970) J. Chem. Phys. 52: 2919 Paldus J., Čížek J. (1971) J. Chem. Phys. 54: 2293 Paldus J., Veillard A. (1977) Chem. Phys. Lett. 50: 6 Paldus J., Veillard A. (1978) Mol. Phys. 35: 445 Paldus J., Čížek J., Keating B.A. (1973) Phys. Rev. A 8: 640 Parr R.G. (1963) The Quantum Theory of Molecular Electronic Structure. Benjamin, New York Roothaan C.C.J. (1951) Rev. Mod. Phys. 25: 69 Davidson E.R., Borden W.T. (1983) J. Phys. Chem. 87: 4783 Allen W.D., Horner D.A., Dekock R.L., Remington R.B, Schaefer III H.F. (1989) Chem. Phys. 133: 11 Paldus J., Chin E. (1983) Intern. J. Quant. Chem. 24: 373 Paldus J., Chin E., Grey M.G. (1983) Intern. J. Quant. Chem. 24: 395 Pauncz R., Paldus J. (1983) Intern. J. Quant. Chem. 24: 411 Paldus J., Takahashi M. (1984) Intern. J. Quant. Chem. 25: 423 Takahashi M., Paldus J. (1984) Intern. J. Quant. Chem. 26: 349 Takahashi M., Paldus J. (1985) Intern. J. Quant. Chem. 28: 459 Barnes L.A., Lindh R. (1994) Chem. Phys. Lett. 223: 207 Asmis K.R., Taylor T.R., Neumark D.M. (1999) J. Chem. Phys. 111: 8838 Gwaltney S.R., Head-Gordon M. (2001) Phys. Chem. Chem. Phys. 3: 4495 Li X., Paldus J. (2007) J. Chem. Phys. 126: 224304 Holka F., Neogrády P., Urban M., Paldus J. (2007) Coll. Czech. Chem. Commun. 72: 197 J. Paldus, in Theoretical Chemistry: Advances and Perspectives, eds. by E. Eyring, D.J. Henderson, vol. 2 (Academic, New York, 1975) pp. 131–290 Mataga N., Nishimoto K. (1957) Z. Phys. Chem. (Frankfurt) 13: 140 Goeppert-Mayer M., Sklar A.L. (1938) J. Chem. Phys. 6: 635 Lieb E.H., Wu F.Y. (1968) Phys. Rev. Lett. 20: 1445 Hashimoto K., Čížek J., Paldus J. (1988) Intern. J. Quant. Chem. 34: 407 Čížek J., Hashimoto K., Paldus J., Takahashi M. (1991) Israel J. Chem. 31: 423 Paldus J., Čížek J. (1969) Prog. Theor. Phys. (Kyoto) 42: 769 Paldus J., Takahashi M., Cho R.W.H. (1984) Phys. Rev. B 30: 4267 Takahashi M., Paldus J. (1985) Phys. Rev. B 31: 5152 Sondheimer F. (1967) Proc. R. Soc. London A 297: 173 Sondheimer F. (1972) Acc. Chem. Res. 5: 81 Sondheimer F. (1974) Chimia 28: 163 Gerratt P.J. (1986) Aromaticity. Wiley, New York Lloyd D., (1989) The Chemistry of Conjugated Cyclic Compounds To Be or Not To Be Like Benzene? Wiley, New York Fukutome H. (1968) Prog. Theor. Phys. (Kyoto) 40: 998–1227 Harris R.A., Falicov L.M. (1969) J. Chem. Phys. 51: 5034, and references therein Cazes D., Salem L., Tric C. (1974) J. Polym. Sci. C 29: 494 VogelE., Roth H.D. (1964) Angew. Chem. Int. Ed. 3: 228 R.M. McQuilkin, B.W. Metcalf, F. Sondheimer, Chem. Commun, 338 (1971) Sondheimer F., Wolovsky R., Amiel Y. (1962) J. Am. Chem. Soc. 84: 274 Sondheimer F., Gaoni Y. (1962) J. Am. Chem. Soc. 84: 3520