Approximate solution of impedance matching for nonmagnetic homogeneous absorbing materials

The European Physical Journal Special Topics - Tập 231 - Trang 4213-4220 - 2022
Xiangyu Wang1, Zuojuan Du2, Mingming Hou2, Zizhao Ding2, Chao Jiang2, Xiaozhong Huang2, Jianling Yue2
1School of Physics and Electronics, Central South University, Changsha, People’s Republic of China
2Powder Metallurgy Research Institute, Hunan Key Laboratory of Advanced Fibers and Composites, Central South University, Changsha, People’s Republic of China

Tóm tắt

Impedance matching is an essential concept in the design of absorbing materials. Its basic form $$ Z_\mathrm{{in}}$$ – $$Z_{0} \quad =$$ 0 derived from the expression of reflectivity transmission line is often used to explain the reason for the reflectivity peak. Still, the relationship between impedance matching and material parameters has not been accurately described so far. In this paper, for nonmagnetic homogeneous materials, a solution of impedance matching equation is proposed to illustrate the relationship between impedance matching and the complex permittivity of absorbing materials. The thickness required for impedance matching is also obtained in the proposed solution. An eigenvalue P containing the relationship between the real and imaginary parts of the permittivity is presented. When P is equal to a positive odd number squared, with a corresponding definite thickness, the material can achieve impedance matching. With the parameters data in the available references, the solution is verified to be effective.

Tài liệu tham khảo

X. Guan et al., J. Alloys Compd. 893, 162317 (2022) M. Zhang et al., Nanotechnology 31, 275707 (2020) B. Fu et al., J. Mater. Sci. Mater. Electron. 32, 9611 (2021) Z. Peng, J.-Y. Hwang, M. Andriese, Appl. Phys. Express 5, 077301 (2012) C. Liao et al., RSC Adv. 8, 15315 (2018) Y. Wang et al., Ceram. Int. 44, 3606 (2018) H.M. Musal, H.T. Hahn, IEEE Trans. Magn. 25, 3851 (1989) H.M. Musal, D.C. Smith, IEEE Trans. Magn. 26, 1462 (1990) H.M. Musal, H.T. Hahn, G.G. Bush, J. Appl. Phys. 63, 3768 (1988) Y. Huang et al., Compos. Part B Eng. 163, 598 (2019) Z. Ye et al., J. Alloys Compd. 893, 162396 (2022) X. Zhao et al., J. Colloid Interface Sci. 607, 192 (2022) R. Shu et al., J. Colloid Interface Sci. 606, 1918 (2022) Y. Sun et al., Carbon 186, 333 (2022) K. Wang et al., ACS Appl. Nano Mater. 2, 8063 (2019) J.-P. Chen et al., Carbon 164, 59 (2020) B. Quan et al., Adv. Funct. Mater. 29, 1901236 (2019) G. Wan et al., J. Phys. D Appl. Phys. 49, 235104 (2016) X. Liu, Z. Zhang, Y. Wu, Compos. Part B Eng. 42, 326 (2011) H. Cai et al., J. Alloys Compd. 893, 162227 (2022) T. Wang et al., J. Colloid Interface Sci. 595, 1 (2021) S. Zhang et al., J. Phys. D Appl. Phys. 53, 265004 (2020) L.T. Hall et al., Microw. Opt. Technol. Lett. 45, 491 (2005) Y. Wang et al., J. Mater. Chem. A 9, 24503 (2021) B. Quan et al., Nano Res. 14, 1495 (2020) X. Huang et al., Nano Res. 14, 4006 (2021) Y. Li et al., Nano 13, 1850125 (2018) L. Wang et al., Carbon 155, 298 (2019) C. Chen et al., J. Eur. Ceram. Soc. 38, 1639 (2018) Z. Zhao et al., ACS Sustain. Chem. Eng. 7, 7183 (2019) Q. Zhang et al., Appl. Surf. Sci. 473, 706 (2019)