Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các biểu thức gần đúng cho mối quan hệ giữa mật độ điện tích bề mặt/tiềm năng bề mặt và phân bố tiềm năng lớp kép cho hạt keo hình cầu hoặc hình trụ dựa trên phương trình Poisson-Boltzmann đã được điều chỉnh
Tóm tắt
Các biểu thức gần đúng cho mối quan hệ giữa mật độ điện tích bề mặt và tiềm năng bề mặt, cùng phân bố tiềm năng lớp kép được phát triển cho hạt keo hình cầu hoặc hình trụ trong dung dịch điện giải. Các biểu thức thu được dựa trên một hình thức gần đúng của phương trình Poisson-Boltzmann đã được điều chỉnh, xem xét hiệu ứng kích thước ion thông qua hệ số hoạt động Carnahan-Starling của các ion trong dung dịch điện giải. Chúng tôi tiếp tục phát triển biểu thức gần đúng cho các tiềm năng bề mặt hiệu quả của một hạt hình cầu hoặc hình trụ và cho năng lượng tương tác tĩnh điện giữa hai hạt hình cầu hoặc hình trụ dựa trên phương pháp xấp xỉ superposition tuyến tính.
Từ khóa
#mật độ điện tích bề mặt #tiềm năng bề mặt #hạt keo #phương trình Poisson-Boltzmann #năng lượng tương tác tĩnh điệnTài liệu tham khảo
Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14:633–662
Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier/Academic Press, Amsterdam
Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134
Ohshima H, Furusawa K (eds) (1998) Electrical phenomena at interfaces, fundamentals, measurements, and applications. 2nd ed, revised and expanded edn. Dekker, New York
Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York
Lyklema J (2005) Fundamentals of interface and colloid science, Volume IV, Chapter 3, Elsevier/Academic Press, Amsterdam
Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier/Academic Press, Amsterdam
Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, Hoboken
Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in nano-, bio-, and environmental sciences. John Wiley & Sons, Hoboken
Sparnaay MJ (1972) Ion-size corrections of the Poisson-Boltzmann equation. J Electroanal Chem 37:65–70
Adamczyk Z, Warszyński P (1996) Role of electrostatic interactions in particle adsorption. Adv Colloid Interface Sci 63:41–149
Biesheuvel PW, van Soestbergen M (2007) Counterion volume effects in mixed electrical double layers. J Colloid Interface Sci 316:490–499
Lopez-Garcia JJ, Horno J, Grosse C (2011) Poisson-Boltzmann description of the electrical double layer including ion size effects. Langmuir 27:13970–13974
Lopez-Garcia JJ, Horno J, Grosse C (2012) Equilibrium properties of charged spherical colloidal particles suspended in aqueous electrolytes: finite ion size and effective ion permittivity effects. J Colloid Interface Sci 380:213–221
Giera B, Henson N, Kober EM, Shell MS, Squires TM (2015) Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31:3553–3562
Lopez-Garcia JJ, Horno J, Grosse C (2016) Ion size effects on the dielectric and electrokinetic properties in aqueous colloidal suspensions. Curr Opin Colloid Interface 24:23–31
Bikerman JJ (1942) Structure and capacity of electrical double layer. Philos Mag 33:384
Hill TL (1962) Statistical thermodynamics. Addison-Westley, Reading
Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636
Ohshima H (2016) An approximate analytic solution to the modified Poisson-Boltzmann equation. Effects of ionic size. Colloid Polym Sci 294:2121–2125
Ohshima H (2017) Approximate analytic expressions for the electrostatic interaction energy between two colloidal particles based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295:289–296
Ohshima H (2017) A simple algorithm for the calculation of an approximate electrophoretic mobility of a spherical colloidal particle based on the modified Poisson-Boltzmann equation. Colloid Polym Sci 295:543–548
White LR (1977) Approximate analytic solution of the Poisson–Boltzmann equation for a spherical colloidal particle. J Chem Soc Faraday Trans II 73:577–596
Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J Colloid Interface Sci 90:17–26
Ohshima H (1995) Effective surface potential and double-layer interaction of colloidal particles. J Colloid Interface Sci 174:45–52
Ohshima H (1998) Surface charge density/surface potential relationship for a cylindrical particle in an electrolyte solution. J Colloid Interface Sci 200:291–297
Attard P (1993) Simulation of the chemical potential and the cavity free energy of dense hard sphere fluids. J Chem Phys 98:2225–2231
Lamm G (2003) In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 19. John Wiley & Sons, Hoboken, pp 147–365
Zhou S (2015) Three-body potential amongst similarly or differently charged cylinder colloids immersed in a simple electrolyte solution. J Stat Mech Theory Exp Paper ID/11030
Zhou S (2017) Effective electrostatic interactions between two overall neutral surfaces with quenched charge heterogeneity over atomic length scale. J Stat Phys 169:1019–1037
Zhou S, Lamperski S, Sokołowska M (2017) Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode. J Stat Mech Theory Exp Paper ID/073207