Approximate bisimulation relations for constrained linear systems

Automatica - Tập 43 Số 8 - Trang 1307-1317 - 2007
Antoine Girard1, George J. Pappas2
1Université Joseph Fourier, Laboratoire Jean Kuntzmann, B.P. 53, 38041 Grenoble Cedex 9, France#TAB#
2Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Angeli, 2002, A Lyapunov approach to incremental stability properties, IEEE Transactions on Automatic Control, 47, 410, 10.1109/9.989067

Antoulas, 2000, A survey of model reduction methods for large-scale systems, Contemporary Mathematics, 280, 193, 10.1090/conm/280/04630

Asarin, E., Bournez, O., Dang, T., & Maler, O. (2000). Approximate reachability analysis of piecewise linear dynamical systems, In HSCC, Lecture Notes in Computer Science (Vol. 1790) (pp. 21–31). Berlin: Springer.

Aubin, J. P. (1991). Viability Theory. Birkhauser, 1991.

Chutinan, A., & Krogh, B. H. (1999). Verification of polyhedral invariant hybrid automata using polygonal flow pipe approximations. In HSCC, Lecture Notes in Computer Science (Vol. 1569) (pp. 76–90). Berlin: Springer.

Clarke, 2000

de Alfaro, L., Faella, M., & Stoelinga, M. (2004). Linear and branching metrics for quantitative transition systems. In ICALP’04, Lecture Notes in Computer Science (Vol. 3142): (pp. 1150–1162). Berlin: Springer.

Desharnais, 2004, Metrics for labelled markov processes, Theoretical Computer Science, 318, 323, 10.1016/j.tcs.2003.09.013

Freeman, 1996, Inverse optimality in robust stabilization, SIAM Journal on Control and Optimization, 34, 1365, 10.1137/S0363012993258732

Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. In HSCC, Lecture Notes in Computer Science (Vol. 3414) (pp. 291–305). Berlin: Springer.

Girard, A., Julius, A. A., & Pappas, G. J. MATISSE (2005). 〈http://www.seas.upenn.edu/~agirard/Software/MATISSE/〉

Girard, A., & Pappas, G. J. (2005a). Approximate bisimulations for constrained linear systems. In Proceedings of CDC and ECC (pp. 4700–4705).

Girard, A., & Pappas, G. J. (2005b). Approximate bisimulations for nonlinear dynamical systems. In Proceedings of CDC and ECC (pp. 684–689).

Girard, 2007, Approximation metrics for discrete and continuous systems, IEEE Transaction on Automatic Control, 52, 782, 10.1109/TAC.2007.895849

Haghverdi, 2005, Bisimulation relations for dynamical, control, and hybrid systems, Theoretical Computer Science, 342, 229, 10.1016/j.tcs.2005.03.045

Han, Z., & Krogh, B. H. (2006). Reachability analysis of large-scale affine systems using low-dimensional polytopes. In HSCC, Lecture Notes in Computer Science (Vol. 3927) (pp. 287–301). Berlin: Springer.

Kurzhanski, A., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In HSCC, Lecture Notes in Computer Science (Vol. 1790) Berlin: Springer.

Kvasnica, M., Grieder, P., & Baotić, M. (2004). Multi-parametric toolbox (MPT). 〈http://control.ee.ethz.ch/~mpt/〉.

Löfberg, J. (2004). YALMIP: a toolbox for modeling and optimization in MATLAB. In Proceedings of CACSD〈http://control.ee.ethz.ch/~joloef/yalmip.php〉.

Mitchell, I., & Tomlin, C. (2000). Level set methods for computation in hybrid systems. In HSCC, Lecture Notes in Computer Science (Vol. 1790) Berlin: Springer.

Pappas, 2003, Bisimilar linear systems, Automatica, 39, 2035, 10.1016/j.automatica.2003.07.003

Pola, G., van der Schaft, A. J., & Di Benedetto, M. D. (2004). Bisimulation theory for switching linear systems. In Proceedings of CDC (pp. 555–569).

Sastry, 1999

Sontag, 2001, Lyapunov characterizations of input to output stability, SIAM Journal on Control and Optimization, 39, 226, 10.1137/S0363012999350213

Sturm, 1999, Using SEDUMI 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Softwares, 11–12, 625, 10.1080/10556789908805766

van der Schaft, 2004, Equivalence of dynamical systems by bisimulation, IEEE Transactions on Automatic Control, 49, 2160, 10.1109/TAC.2004.838497

Wonham, 1979

Yazarel, H., & Pappas, G. J. (2004). Geometric programming relaxations for linear system reachability. In Proceedings of ACC.