Approximate Partial Noether Operators of the Schwarzschild Spacetime

Ibrar Hussain1, F. M. Mahomed2, Asghar Qadir1
1Centre for Advanced Mathematics and Physics National University of Sciences and Technology, Campus of the College of Electrical and Mechanical Engineering, Rawalpindi, Pakistan
2Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand, Wits, South Africa

Tóm tắt

The objective of this paper is twofold: (a) to find a natural example of a perturbed Lagrangian that has different partial Noether operators with symmetries different from those of the underlying Lagrangian. First we regard the Schwarzschild spacetime as a perturbation of the Minkowski space-time and investigate the approximate partial Noether operators for this perturbed spacetime. It is shown that the Minkowski spacetime has 12 partial Noether operators, 10 of which are different from the 17 Noether symmetries for this spacetime. It is found that for the perturbed Schwarzschild spacetime we recover the exact partial Noether operators as trivial first-order approximate partial Noether operators and there is no non-trivial approximate partial Noether operator as for the Noether case. As a consequence we state a conjecture. (b) Then we prove a conjecture that the approximate symmetries of a perturbed Lagrangian form a subalgebra of the approximate symmetries of the corresponding perturbed Euler—Lagrange equations and illustrate it by our examples. This is in contrast to approximate partial Noether operators.

Từ khóa


Tài liệu tham khảo

V. A. Baikov, R. K. Gazizov and N. H. Ibragimov, Math. USSR Sbornik 64 (1989) 427. E. Noether, Invariant variations problems, Nachr. Konig. Gissell. Wissen., Gottingen, Math.-Phys. Kl. 2 (1918) 235. (English translation in transport theory and Statistical Physics 1 (1971)) 186. L. V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1980). H. Goldstein, Classical Mechanics (Addison-Wesley, 1950). P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1993). K. S. Govinder, T. G. Heil and T. Uzer, Phys. Lett. A A240 (1998) 127. I. M. Anderson and T. E. Duchamp, J. Diff. Equa. 51 (1984) 1. N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, ed. N. H. Ibragimov (CRC Press, Boca Raton, Florida, 1994). C. M. Khalique and F. M. Mahomed, Math. Probl. Engin. 26 (2005) 141. H. Steudel, Zeit Naturforsch 17A (1962) 129. S. C. Anco and G. W. Bluman, Euro. J. Appli. Math. 9 (2002) 567. A. H. Kara and F. M. Mahomed, Nonlinear Dyn. 45 (2006) 367. L. A. Low, P. G. Reinhall, D. W. Storti and E. B. Goldman, Struct. Control Health Monit. 13 (2006) 417. A. G. Johnpillai, A. H. Kara and F. M. Mahomed, J. Comp. Appl. Math. 223 (2009) 508. A. H. Kara, F. M. Mahomed and A. Qadir, Nonlinear Dyn. 51 (2008) 183. I. Naeem and F. M. Mahomed, J. Math. Anal. Appl. 342 (2008) 70. I. Naeem and F. M. Mahomed, Nonlinear Dyn. (2009), DOI 10.1007/s11071-008-9441-4. I. Hussain, F. M. Mahomed and A. Qadir, Gen. Rel. Grav. (2009) DOI 10.1007/s10714-009-0772-3. R. K. Gazizov, J. Nonlinear Math. Phys. 3 (1996) 96. G. Unal, Phys. Lett. A 269 (2000) 13. D. Kramer, H. Stephani, M. A. H. MacCullum and E. Herlt, Exact Solutions of Einstein Field Equations (Cambridge University Press, Cambridge, 1980). C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (W. H. Freeman and Company, San Francisco, 1973). G. S. Hall, Symmetries and Curvature Structure in General Relativity (World Scientific, Singapore, 2004). I. Hussain, F. M. Mahomed and A. Qadir, SIGMA 3 (2007) 115, arXiv.0712.1089. T. Feroze and A. H. Kara, Int. J. Non-linear Mech. 37 (2002) 275.