Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adurthi, N., Singla, P., Singh, T., 2017. Conjugate unscented transformation: applications to estimation and control. J. Dyn. Syst. Meas. Contr., 140(3):030907. https://doi.org/10.1115/1.4037783
Afshari, H., Gadsden, S., Habibi, S., 2017. Gaussian filters for parameter and state estimation: a general review of theory and recent trends. Signal Process., 135:218–238. https://doi.org/10.1016/j.sigpro.2017.01.001
Agamennoni, G., Nebot, E.M., 2014. Robust estimation in non-linear state-space models with state-dependent noise. IEEE Trans. Signal Process., 62(8):2165–2175. https://doi.org/10.1109/TSP.2014.2305636
Ali-Loytty, S.S., 2010. Box Gaussian mixture filter. IEEE Trans. Autom. Contr., 55(9):2165–2169. https://doi.org/10.1109/TAC.2010.2051486
Arasaratnam, I., Haykin, S., 2008. Square-root quadrature Kalman filtering. IEEE Trans. Signal Process., 56(6):2589–2593. https://doi.org/10.1109/TSP.2007.914964
Arasaratnam, I., Haykin, S., 2009. Cubature Kalman filters. IEEE Trans. Autom. Contr., 54(6):1254–1269. https://doi.org/10.1109/TAC.2009.2019800
Aravkin, A., Burke, J.V., Pillonetto, G., 2012. Robust and trend-following Kalman smoothers using Student’s t. IFAC Proc. Vol., 45(16):1215–1220. https://doi.org/10.3182/20120711-3-BE-2027.00283
Ardeshiri, T., Granström, K., Ozkan, E., et al., 2015. Greedy reduction algorithms for mixtures of exponential family. IEEE Signal Process. Lett., 22(6):676–680. https://doi.org/10.1109/LSP.2014.2367154
Arulampalam, M.S., Maskell, S., Gordon, N., et al., 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50(2):174–188. https://doi.org/10.1109/78.978374
Azam, S.E., Chatzi, E., Papadimitriou, C., 2015. A dual Kalman filter approach for state estimation via outputonly acceleration measurements. Mech. Syst. Signal Process., 60–61:866–886. https://doi.org/10.1016/j.ymssp.2015.02.001
Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585–601. https://doi.org/10.1016/j.jprocont.2011.01.001
Bell, B.M., Cathey, F.W., 1993. The iterated Kalman filter update as a Gauss–Newton method. IEEE Trans. Autom. Contr., 38(2):294–297. https://doi.org/10.1109/9.250476
Bielecki, T.R., Jakubowski, J., Niewegłowski, M., 2017. Conditional Markov chains: properties, construction and structured dependence. Stoch. Process. Their Appl., 127(4):1125–1170. https://doi.org/10.1016/j.spa.2016.07.010
Bilik, I., Tabrikian, J., 2010. MMSE-based filtering in presence of non-Gaussian system and measurement noise. IEEE Trans. Aerosp. Electron. Syst., 46(3):1153–1170. https://doi.org/10.1109/TAES.2010.5545180
Bilmes, J.A., 1999. Buried Markov models for speech recognition. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.713–716. https://doi.org/10.1109/ICASSP.1999.759766
Bogler, P.L., 1987. Tracking a maneuvering target using input estimation. IEEE Trans. Aerosp. Electron. Syst., 23(3):298–310. https://doi.org/10.1109/TAES.1987.310826
Bordonaro, S., Willett, P., Bar-Shalom, Y., 2014. Decorrelated unbiased converted measurement Kalman filter. IEEE Trans. Aerosp. Electron. Syst., 50(2):1431–1444. https://doi.org/10.1109/TAES.2014.120563
Bordonaro, S., Willett, P., Bar-Shalom, Y., 2017. Consistent linear tracker with converted range, bearing and range rate measurements. IEEE Trans. Aerosp. Electron. Syst., 53(6):3135–3149. https://doi.org/10.1109/TAES.2017.2730980
Bugallo, M.F., Elvira, V., Martino, L., et al., 2017. Adaptive importance sampling: the past, the present, and the future. IEEE Signal Process. Mag., 34(4):60–79. https://doi.org/10.1109/MSP.2017.2699226
Cappé, O., Godsill, S.J., Moulines, E., 2007. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE, 95(5):899–924. https://doi.org/10.1109/JPROC.2007.893250
Carrassi, A., Bocquet, M., Bertino, L., et al., 2017. Data assimilation in the geosciences—an overview on methods, issues and perspectives. arXiv:1709.02798. http://arxiv.org/abs/1709.02798
Chang, L., Hu, B., Li, A., et al., 2013. Transformed unscented Kalman filter. IEEE Trans. Autom. Contr., 58(1):252–257. https://doi.org/10.1109/TAC.2012.2204830
Chen, B., Principe, J.C., 2012. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett., 19(8):491–494. https://doi.org/10.1109/LSP.2012.2204435
Chen, B., Liu, X., Zhao, H., et al., 2017. Maximum correntropy Kalman filter. Automatica, 76:70–77. https://doi.org/10.1016/j.automatica.2016.10.004
Chen, F.C., Hsieh, C.S., 2000. Optimal multistage Kalman estimators. IEEE Trans. Autom. Contr., 45(11):2182–2188. https://doi.org/10.1109/9.887678
Chen, H.D., Chang, K.C., Smith, C., 2010. Constraint optimized weight adaptation for Gaussian mixture reduction. SPIE, 7697:76970N. https://doi.org/10.1117/12.851993
Chen, R., Liu, J.S., 2000. Mixture Kalman filters. J. R. Stat. Soc. Ser. B, 62(3):493–508. https://doi.org/10.1111/1467-9868.00246
Cheng, Y., Ye, H., Wang, Y., et al., 2009. Unbiased minimum-variance state estimation for linear systems with unknown input. Automatica, 45(2):485–491. https://doi.org/10.1016/j.automatica.2008.08.009
Clark, J.M.C., Vinter, R.B., Yaqoob, M.M., 2007. Shifted Rayleigh filter: a new algorithm for bearings-only tracking. IEEE Trans. Aerosp. Electron. Syst., 43(4):1373–1384. https://doi.org/10.1109/TAES.2007.4441745
Crassidis, J.L., Markley, F.L., Cheng, Y., 2007. Survey of nonlinear attitude estimation methods. J. Guid. Contr. Dyn., 30(1):12–28. https://doi.org/10.2514/1.22452
Crouse, D.F., Willett, P., Pattipati, K., et al., 2011. A look at Gaussian mixture reduction algorithms. 14th Int. Conf. on Information Fusion, p.1–8.
Darouach, M., Zasadzinski, M., 1997. Unbiased minimum variance estimation for systems with unknown exogenous inputs. Automatica, 33(4):717–719. https://doi.org/10.1016/S0005-1098(96)00217-8
Daum, F., Huang, J., 2010. Generalized particle flow for nonlinear filters. SPIE, 7698:76980I. https://doi.org/10.1117/12.839421
Deisenroth, M.P., Turner, R.D., Huber, M.F., et al., 2012. Robust filtering and smoothing with Gaussian processes. IEEE Trans. Autom. Contr., 57(7):1865–1871. https://doi.org/10.1109/TAC.2011.2179426
del Moral, P., Arnaud, D., 2014. Particle methods: an introduction with applications. Proc. ESAIM, 44:1–46. https://doi.org/10.1051/proc/201444001
DeMars, K.J., Bishop, R.H., Jah, M.K., 2013. Entropybased approach for uncertainty propagation of nonlinear dynamical systems. J. Guid. Contr. Dyn., 36(4):1047–1057. https://doi.org/10.2514/1.58987
Djurić, P.M., Miguez, J., 2002. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.1621–1624. https://doi.org/10.1109/ICASSP.2002.5744928
Dong, H., Wang, Z., Gao, H., 2010. Robust H ∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts. IEEE Trans. Signal Process., 58(4):1957–1966. https://doi.org/10.1109/TSP.2009.2038965
Duan, Z., Li, X.R., 2013. The role of pseudo measurements in equality-constrained state estimation. IEEE Trans. Aerosp. Electron. Syst., 49(3):1654–1666. https://doi.org/10.1109/TAES.2013.6558010
Duan, Z., Li, X.R., 2015. Analysis, design, and estimation of linear equality-constrained dynamic systems. IEEE Trans. Aerosp. Electron. Syst., 51(4):2732–2746. https://doi.org/10.1109/TAES.2015.140441
Duník, J., Šimandl, M., Straka, O., 2010. Multiple-model filtering with multiple constraints. Proc. American Control Conf., p.6858–6863. https://doi.org/10.1109/ACC.2010.5531573
Duník, J., Straka, O., Šimandl, M., 2013. Stochastic integration filter. IEEE Trans. Autom. Contr., 58(6):1561–1566. https://doi.org/10.1109/TAC.2013.2258494
Duník, J., Straka, O., Šimandl, M., et al., 2015. Randompoint-based filters: analysis and comparison in target tracking. IEEE Trans. Aerosp. Electron. Syst., 51(2):1403–1421. https://doi.org/10.1109/TAES.2014.130136
Duník, J., Straka, O., Mallick, M., et al., 2016. Survey of nonlinearity and non-Gaussianity measures for state estimation. 19th Int. Conf. on Information Fusion, p.1845–1852.
Duník, J., Straka, O., Ajgl, J., et al., 2017a. From competitive to cooperative filter design. Proc. 20th Int. Conf. on Information Fusion, p.235–243. https://doi.org/10.23919/ICIF.2017.8009652
Duník, J., Straka, O., Kost, O., et al., 2017b. Noise covariance matrices in state-space models: a survey and comparison of estimation methods—part I. Int. J. Adapt. Contr. Signal Process., 31(11):1505–1543. https://doi.org/10.1002/acs.2783
Eldar, Y.C., 2008. Rethinking biased estimation: improving maximum likelihood and the Cramér-Rao bound. Found. Trends Signal Process., 1(4):305–449. https://doi.org/10.1561/2000000008
Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn., 53(4):343–367. https://doi.org/10.1007/s10236-003-0036-9
Fan, H., Zhu, Y., Fu, Q., 2011. Impact of mode decision delay on estimation error for maneuvering target interception. IEEE Trans. Aerosp. Electron. Syst., 47(1):702–711. https://doi.org/10.1109/TAES.2011.5705700
Fang, H., de Callafon, R.A., 2012. On the asymptotic stability of minimum-variance unbiased input and state estimation. Automatica, 48(12):3183–3186. https://doi.org/10.1016/j.automatica.2012.08.039
Faubel, F., McDonough, J., Klakow, D., 2009. The split and merge unscented Gaussian mixture filter. IEEE Signal Process. Lett., 16(9):786–789. https://doi.org/10.1109/LSP.2009.2024859
Friedland, B., 1969. Treatment of bias in recursive filtering. IEEE Trans. Autom. Contr., 14(4):359–367. https://doi.org/10.1109/TAC.1969.1099223
Frigola-Alcade, R., 2015. Bayesian Time Series Learning with Gaussian Pocesses. PhD Thesis, University of Cambridge, Cambridge, UK.
Fritsche, C., Orguner, U., Gustafsson, F., 2016. On parametric lower bounds for discrete-time filtering. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.4338–4342. https://doi.org/10.1109/ICASSP.2016.7472496
García-Fernández, A.F., Svensson, L., 2015. Gaussian map filtering using Kalman optimization. IEEE Trans. Autom. Contr., 60(5):1336–1349. https://doi.org/10.1109/TAC.2014.2372909
García-Fernández, A.F., Morelande, M.R., Grajal, J., et al., 2015a. Adaptive unscented Gaussian likelihood approximation filter. Automatica, 54:166–175. https://doi.org/10.1016/j.automatica.2015.02.005
García-Fernández, A.F., Svensson, L., Morelande, M.R., et al., 2015b. Posterior linearization filter: principles and implementation using sigma points. IEEE Trans. Signal Process., 63(20):5561–5573. https://doi.org/10.1109/TSP.2015.2454485
Geeter, J.D., Brussel, H.V., Schutter, J.D., et al., 1997. A smoothly constrained Kalman filter. IEEE Trans. Patt. Anal. Mach. Intell., 19(10):1171–1177. https://doi.org/10.1109/34.625129
Gerstner, T., Griebel, M., 1998. Numerical integration using sparse grids. Numer. Algor., 18(3):209–232. https://doi.org/10.1023/A:1019129717644
Ghahremani, E., Kamwa, I., 2011. Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements. IEEE Trans. Power Syst., 26(4):2556–2566. https://doi.org/10.1109/TPWRS.2011.2145396
Ghoreyshi, A., Sanger, T.D., 2015. A nonlinear stochastic filter for continuous-time state estimation. IEEE Trans. Autom. Contr., 60(8):2161–2165. https://doi.org/10.1109/TAC.2015.2409910
Gigerenzer, G., Brighton, H., 2009. Homo heuristicus: why biased minds make better inferences. Top. Cogn. Sci., 1(1):107–143. https://doi.org/10.1111/j.1756-8765.2008.01006.x
Gillijns, S., Moor, B.D., 2007. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica, 43(5):934–937. https://doi.org/10.1016/j.automatica.2006.11.016
Girón, F.J., Rojano, J.C., 1994. Bayesian Kalman filtering with elliptically contoured errors. Biometrika, 81(2):390–395.
Godsill, S., Clapp, T., 2001. Improvement strategies for Monte Carlo particle filters. In: Doucet, A., de Freitas, N., Gordon, N. (Eds.), Sequential Monte Carlo Methods in Practice. Springer, New York, USA. https://doi.org/10.1007/978-1-4757-3437-9_7
Gordon, N., Percival, J., Robinson, M., 2003. The Kalman-Lévy filter and heavy-tailed models for tracking manoeuvring targets. Proc. 6th Int. Conf. on Information Fusion, p.1024–1031. https://doi.org/10.1109/ICIF.2003.177351
Gorman, J.D., Hero, A.O., 1990. Lower bounds for parametric estimation with constraints. IEEE Trans. Inform. Theory, 36(6):1285–1301. https://doi.org/10.1109/18.59929
Granström, K., Willett, P., Bar-Shalom, Y., 2015. Systematic approach to IMM mixing for unequal dimension states. IEEE Trans. Aerosp. Electron. Syst., 51(4):2975–2986. https://doi.org/10.1109/TAES.2015.150015
Grewal, M.S., Andrews, A.P., 2014. Kalman Filtering: Theory and Practice with MATLAB. Wiley-IEEE Press, New York, USA.
Guo, Y., Fan, K., Peng, D., et al., 2015. A modified variable rate particle filter for maneuvering target tracking. Front. Inform. Technol. Electron. Eng., 16(11):985–994. https://doi.org/10.1631/FITEE.1500149
Guo, Y., Tharmarasa, R., Rajan, S., et al., 2016. Passive tracking in heavy clutter with sensor location uncertainty. IEEE Trans. Aerosp. Electron. Syst., 52(4):1536–1554. https://doi.org/10.1109/TAES.2016.140820
Hanebeck, U.D., Briechle, K., Rauh, A., 2003. Progressive Bayes: a new framework for nonlinear state estimation. SPIE, 5099:256–267. https://doi.org/10.1117/12.487806
Hendeby, G., 2008. Performance and Implementation Aspects of Nonlinear Filtering. PhD Thesis, Linköping University, Linköping, Sweden.
Hewett, R.J., Heath, M.T., Butala, M.D., et al., 2010. A robust null space method for linear equality constrained state estimation. IEEE Trans. Signal Process., 58(8):3961–3971. https://doi.org/10.1109/TSP.2010.2048901
Ho, Y., Lee, R., 1964. A Bayesian approach to problems in stochastic estimation and control. IEEE Trans. Autom. Contr., 9(4):333–339. https://doi.org/10.1109/TAC.1964.1105763
Hsieh, C.S., 2009. Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs. Automatica, 45(9):2149–2153. https://doi.org/10.1016/j.automatica.2009.05.004
Hsieh, C.S., 2000. Robust two-stage Kalman filters for systems with unknown inputs. IEEE Trans. Autom. Contr., 45(12):2374–2378. https://doi.org/10.1109/9.895577
Hu, X., Bao, M., Zhang, X.P., et al., 2015. Generalized iterated Kalman filter and its performance evaluation. IEEE Trans. Signal Process., 63(12):3204–3217. https://doi.org/10.1109/TSP.2015.2423266
Huang, Y., Zhang, Y., Wang, X., et al., 2015. Gaussian filter for nonlinear systems with correlated noises at the same epoch. Automatica, 60:122–126. https://doi.org/10.1016/j.automatica.2015.06.035
Huang, Y., Zhang, Y., Li, N., et al., 2016a. Design of Gaussian approximate filter and smoother for nonlinear systems with correlated noises at one epoch apart. Circ. Syst. Signal Process., 35(11):3981–4008. https://doi.org/10.1007/S00034-016-0256-0
Huang, Y., Zhang, Y., Li, N., et al., 2016b. Design of Sigma-point Kalman filter with recursive updated measurement. Circ. Syst. Signal Process., 35(5):1767–1782. https://doi.org/10.1007/s00034-015-0137-y
Huang, Y., Zhang, Y., Li, N., et al., 2017. A novel robust Student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst., 53(3):1545–1554. https://doi.org/10.1109/TAES.2017.2651684
Huber, M.F., 2015. Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications. KIT Scientific Publishing, Karlsruhe, Germany.
Huber, M.F., Hanebeck, U.D., 2008. Progressive Gaussian mixture reduction. 11th Int. Conf. on Information Fusion, p.1–8.
Ishihara, S., Yamakita, M., 2009. Constrained state estimation for nonlinear systems with non-Gaussian noise. 48th IEEE Conf. on Decision Control, p.1279–1284. https://doi.org/10.1109/CDC.2009.5399627
Ito, K., Xiong, K., 2000. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Contr., 45(5):910–927. https://doi.org/10.1109/9.855552
Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Academic Press, New York, USA, p.349–351.
Jia, B., Xin, M., Cheng, Y., 2012. Sparse-grid quadrature nonlinear filtering. Automatica, 48(2):327–341. https://doi.org/10.1016/j.automatica.2011.08.057
Jia, B., Xin, M., Cheng, Y., 2013. High-degree cubature Kalman filter. Automatica, 49(2):510–518. https://doi.org/10.1016/j.automatica.2012.11.014
Judd, K., 2015. Tracking an object with unknown accelerations using a shadowing filter. arXiv:1502.07743. http://arxiv.org/abs/1502.07743
Judd, K., Stemler, T., 2009. Failures of sequential Bayesian filters and the successes of shadowing filters in tracking of nonlinear deterministic and stochastic systems. Phys. Rev. E, 79(6):066206. https://doi.org/10.1103/PhysRevE.79.066206
Julier, S.J., LaViola, J.J., 2007. On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process., 55(6):2774–2784. https://doi.org/10.1109/TSP.2007.893949
Julier, S.J., Uhlmann, J.K., 2004. Unscented filtering and nonlinear estimation. Proc. IEEE, 92(3):401–422. https://doi.org/10.1109/JPROC.2003.823141
Kalman, R., 1960. A new approach to linear filtering and prediction problems. J. Basic Eng., 82(1):35–45. https://doi.org/10.1115/1.3662552
Kalogerias, D.S., Petropulu, A.P., 2016. Grid based nonlinear filtering revisited: recursive estimation asymptotic optimality. IEEE Trans. Signal Process., 64(16):4244–4259. https://doi.org/10.1109/TSP.2016.2557311
Kandepu, R., Foss, B., Imsland, L., 2008. Applying the unscented Kalman filter for nonlinear state estimation. J. Process Contr., 18(7–8): 753–768. https://doi.org/10.1016/j.jprocont.2007.11.004
Kim, K.S., Rew, K.H., 2013. Reduced order disturbance observer for discrete-time linear systems. Automatica, 49(4):968–975. https://doi.org/10.1016/j.automatica.2013.01.014
Kim, K., Shevlyakov, G., 2008. Why Gaussianity? IEEE Signal Process. Mag., 25(2):102–113. https://doi.org/10.1109/MSP.2007.913700
Kitanidis, P.K., 1987. Unbiased minimum-variance linear state estimation. Automatica, 23(6):775–778. https://doi.org/10.1016/0005-1098(87)90037-9
Ko, J., Fox, D., 2009. GP-Bayes filters: Bayesian filtering using Gaussian process prediction and observation models. Auton. Robots, 27(1):75–90. https://doi.org/10.1007/s10514-009-9119-x
Ko, S., Bitmead, R.R., 2007. State estimation for linear systems with state equality constraints. Automatica, 43(8):1363–1368. https://doi.org/10.1016/j.automatica.2007.01.017
Koch, K.R., Yang, Y., 1998. Robust Kalman filter for rank deficient observation models. J. Geod., 72(7–8): 436–441. https://doi.org/10.1007/s001900050183
Kostelich, E., Schreiber, T., 1993. Noise-reduction in chaotic time-series data: a survey of common methods. Phys. Rev. E, 48(3):1752–1763. https://doi.org/10.1103/PhysRevE.48.1752
Kotecha, J.H., Djurić, P.M., 2003a. Gaussian particle filtering. IEEE Trans. Signal Process., 51(10):2592–2601. https://doi.org/10.1109/TSP.2003.816758
Kotecha, J.H., Djurić, P.M., 2003b. Gaussian sum particle filtering. IEEE Trans. Signal Process., 51(10):2602–2612. https://doi.org/10.1109/TSP.2003.816754
Kurz, G., Gilitschenski, I., Hanebeck, U.D., 2016. Recursive Bayesian filtering in circular state spaces. IEEE Aerosp. Electron. Syst. Mag., 31(3):70–87. https://doi.org/10.1109/MAES.2016.150083
Kwon, W.H., Kim, P.S., Park, P., 1999. A receding horizon Kalman FIR filter for discrete time-invariant systems. IEEE Trans. Autom. Contr., 44(9):1787–1791. https://doi.org/10.1109/9.788554
Lan, H., Liang, Y., Yang, F., et al., 2013. Joint estimation and identification for stochastic systems with unknown inputs. IET Contr. Theory Appl., 7(10):1377–1386. https://doi.org/10.1049/iet-cta.2013.0996
Lan, J., Li, X.R., 2015. Nonlinear estimation by LMMSEbased estimation with optimized uncorrelated augmentation. IEEE Trans. Signal Process., 63(16):4270–4283. https://doi.org/10.1109/TSP.2015.2437834
Lan, J., Li, X.R., 2017. Multiple conversions of measurements for nonlinear estimation. IEEE Trans. Signal Process., 65(18):4956–4970. https://doi.org/10.1109/TSP.2017.2716901
Lan, J., Li, X.R., Jilkov, V.P., et al., 2013. Second-order Markov chain based multiple-model algorithm for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst., 49(1):3–19. https://doi.org/10.1109/TAES.2013.6404088
Lerro, D., Bar-Shalom, Y., 1993. Tracking with debiased consistent converted measurements versus EKF. IEEE Trans. Aerosp. Electron. Syst., 29(3):1015–1022. https://doi.org/10.1109/7.220948
Li, B., 2013. State estimation with partially observed inputs: a unified Kalman filtering approach. Automatica, 49(3):816–820. https://doi.org/10.1016/j.automatica.2012.12.007
Li, T., Bolić, M., Djurić, P.M., 2015a. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag., 32(3):70–86. https://doi.org/10.1109/MSP.2014.2330626
Li, T., Villarrubia, G., Sun, S., et al., 2015b. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Front. Inform. Technol. Electron. Eng., 16(11):969–984. https://doi.org/10.1631/FITEE.1500199
Li, T., Corchado, J.M., Bajo, J., et al., 2016a. Effectiveness of Bayesian filters: an information fusion perspective. Inform. Sci., 329:670–689. https://doi.org/10.1016/j.ins.2015.09.041
Li, T., Prieto, J., Corchado, J.M., 2016b. Fitting for smoothing: a methodology for continuous-time target track estimation. Int. Conf. on Indoor Positioning and Indoor Navigation, p.1–8. https://doi.org/10.1109/IPIN.2016.7743582
Li, T., Corchado, J.M., Sun, S., et al., 2017a. Clustering for filtering: multi-object detection and estimation using multiple/massive sensors. Inform. Sci., 388–389:172–190. https://doi.org/10.1016/j.ins.2017.01.028
Li, T., Corchado, J., Prieto, J., 2017b. Convergence of distributed flooding and its application for distributed Bayesian filtering. IEEE Trans. Signal Inform. Process. Netw., 3(3):580–591. https://doi.org/10.1109/TSIPN.2016.2631944
Li, T., Chen, H., Sun, S., et al., 2017c. Joint smoothing, tracking, and forecasting based on continuous-time target trajectory fitting. arXiv:1708.02196. http://arxiv.org/abs/1708.02196
Li, T., Corchado, J., Chen, H., et al., 2017d. Track a smoothly maneuvering target based on trajectory estimation. Proc. 20th Int. Conf. on Information Fusion, p.800–807. https://doi.org/10.23919/ICIF.2017.8009731
Li, T., la Prieta Pintado, F.D., Corchado, J.M., et al., 2018a. Multi-source homogeneous data clustering for multitarget detection from cluttered background with misdetection. Appl. Soft Comput., 60:436–446. https://doi.org/10.1016/j.asoc.2017.07.012
Li, T., Corchado, J., Sun, S., et al., 2018b. Partial consensus and conservative fusion of Gaussian mixtures for distributed PHD fusion. arXiv:1711.10783. http://arxiv.org/abs/1711.10783
Li, X.R., Bar-Shalom, Y., 1996. Multiple-model estimation with variable structure. IEEE Trans. Autom. Contr., 41(4):478–493. https://doi.org/10.1109/9.489270
Li, X.R., Jilkov, V.P., 2002. Survey of maneuvering target tracking: decision-based methods. SPIE, 4728:511–534. https://doi.org/10.1117/12.478535
Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255–1321. https://doi.org/10.1109/TAES.2005.1561886
Li, X.R., Jilkov, V.P., 2012. A survey of maneuvering target tracking, Part VIc: approximate nonlinear density filtering in discrete time. SPIE, 8393:83930V. https://doi.org/10.1117/12.921508
Liang, Y., An, D.X., Zhou, D.H., et al., 2004. A finitehorizon adaptive Kalman filter for linear systems with unknown disturbances. Signal Process., 84(11):2175–2194. https://doi.org/10.1016/j.sigpro.2004.06.021
Liang, Y., Zhou, D.H., Zhang, L., et al., 2008. Adaptive filtering for stochastic systems with generalized disturbance inputs. IEEE Signal Process. Lett., 15:645–648. https://doi.org/10.1109/LSP.2008.2002707
Lindley, D.V., Smith, A.F.M., 1972. Bayes estimates for the linear model. J. R. Stat. Soc. Ser. B, 34(1):1–41.
Liu, W., 2015. Optimal estimation for discrete-time linear systems in the presence of multiplicative and timecorrelated additive measurement noises. IEEE Trans. Signal Process., 63(17):4583–4593. https://doi.org/10.1109/TSP.2015.2447491
Liu, W., Pokharel, P.P., Principe, J.C., 2007. Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process., 55(11):5286–5298. https://doi.org/10.1109/TSP.2007.896065
Liu, Y., Li, X.R., 2015. Measure of nonlinearity for estimation. IEEE Trans. Signal Process., 63(9):2377–2388. https://doi.org/10.1109/TSP.2015.2405495
Liu, Y., Li, X.R., Chen, H., 2013. Generalized linear minimum mean-square error estimation with application to space-object tracking. Asilomar Conf. on Signals, Systems, and Computers, p.2133–2137. https://doi.org/10.1109/ACSSC.2013.6810685
Loxam, J., Drummond, T., 2008. Student-t mixture filter for robust, real-time visual tracking. European Conf. on Computer Vision, p.372–385. https://doi.org/10.1007/978-3-540-88690-7_28
Ma, R., Coleman, T.P., 2011. Generalizing the posterior matching scheme to higher dimensions via optimal transportation. 49th Annual Allerton Conf. on Communication, Control, and Computing, p.96–102. https://doi.org/10.1109/Allerton.2011.6120155
Mahler, R., 2014. Advances in Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood, USA.
Martino, L., Read, J., Elvira, V., et al., 2017. Cooperative parallel particle filters for online model selection and applications to urban mobility. Dig. Signal Process., 60:172–185. https://doi.org/10.1016/j.dsp.2016.09.011
Mayne, D.Q., 1963. Optimal non-stationary estimation of the parameters of a linear system with Gaussian inputs. J. Electron. Contr., 14(1):101–112. https://doi.org/10.1080/00207216308937480
Michalska, H., Mayne, D.Q., 1995. Moving horizon observers and observer-based control. IEEE Trans. Autom. Contr., 40(6):995–1006. https://doi.org/10.1109/9.388677
Mitter, S.K., Newton, N.J., 2003. A variational approach to nonlinear estimation. SIAM J. Contr. Optim., 42(5):1813–1833. https://doi.org/10.1137/S0363012901393894
Mohammaddadi, G., Pariz, N., Karimpour, A., 2017. Modal Kalman filter. Asian J. Contr., 19(2):728–738. https://doi.org/10.1002/asjc.1425
Morelande, M.R., García-Fernández, A.F., 2013. Analysis of Kalman filter approximations for nonlinear measurements. IEEE Trans. Signal Process., 61(22):5477–5484. https://doi.org/10.1109/TSP.2013.2279367
Morrison, N., 2012. Tracking Filter Engineering: the Gauss–Newton and Polynomial Filters. IET, London, UK. https://doi.org/10.1049/PBRA023E
Murphy, K.P., 2007. Conjugate Bayesian Analysis of the Gaussian Distribution. Technical Report, University of British Columbia, Vancouver, Canada.
Nadjiasngar, R., Inggs, M., 2013. Gauss–Newton filtering incorporating Levenberg–Marquardt methods for tracking. Dig. Signal Process., 23(5):1662–1667. https://doi.org/10.1016/j.dsp.2012.12.005
Nørgaard, M., Poulsen, N.K., Ravn, O., 2000. New developments in state estimation for nonlinear systems. Automatica, 36(11):1627–1638. https://doi.org/10.1016/S0005-1098(00)00089-3
Nurminen, H., Ardeshiri, T., Piché, R., et al., 2015. Robust inference for state-space models with skewed measurement noise. IEEE Signal Process. Lett., 22(11):1898–1902. https://doi.org/10.1109/LSP.2015.2437456
Nurminen, H., Piché, R., Godsill, S., 2017. Gaussian flow sigma point filter for nonlinear Gaussian state-space models. Proc. 20th Int. Conf. on Information Fusion, p.1–8. https://doi.org/10.23919/ICIF.2017.8009682
Ostendorf, M., Digalakis, V.V., Kimball, O.A., 1996. From HMM’s to segment models: a unified view of stochastic modeling for speech recognition. IEEE Trans. Speech Audio Process., 4(5):360–378. https://doi.org/10.1109/89.536930
Oudjane, N., Musso, C., 2000. Progressive correction for regularized particle filters. 3rd Int. Conf. on Information Fusion: THB2/10. https://doi.org/10.1109/IFIC.2000.859873
Park, S., Serpedin, E., Qaraqe, K., 2013. Gaussian assumption: the least favorable but the most useful [lecture notes]. IEEE Signal Process. Mag., 30(3):183–186. https://doi.org/10.1109/MSP.2013.2238691
Patwardhan, S.C., Narasimhan, S., Jagadeesan, P., et al., 2012. Nonlinear Bayesian state estimation: a review of recent developments. Contr. Eng. Pract., 20(10):933–953. https://doi.org/10.1016/j.conengprac.2012.04.003
Petrucci, D.J., 2005. Gaussian Mixture Reduction for Bayesian Target Tracking in Clutter. BiblioScholar, Sydney, Australia.
Piché, R., 2016. Cramér-Rao lower bound for linear filtering with t-distributed measurement noise. 19th Int. Conf. on Information Fusion, p.536–540.
Piché, R., Särkkä, S., Hartikainen, J., 2012. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution. IEEE Int. Workshop on Machine Learning for Signal Processing, p.1–6. https://doi.org/10.1109/MLSP.2012.6349794
Pishdad, L., Labeau, F., 2015. Analytic MMSE bounds in linear dynamic systems with Gaussian mixture noise statistics. arXiv:1505.01765. http://arxiv.org/abs/1506.07603
Qi, W., Zhang, P., Deng, Z., 2014. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances. Signal Process., 99:185–200. https://doi.org/10.1016/j.sigpro.2013.12.013
Raitoharju, M., Svensson, L., García-Fernández, Á.F., et al., 2017. Damped posterior linearization filter. arXiv:1704.01113. http://arxiv.org/abs/1704.01113
Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes for Machine Learning. MIT Press, Cambridge, USA.
Reece, S., Roberts, S., 2010. Generalised covariance union: a unified approach to hypothesis merging in tracking. IEEE Trans. Aerosp. Electron. Syst., 46(1):207–221. https://doi.org/10.1109/TAES.2010.5417157
Ristic, B., Wang, X., Arulampalam, S., 2017. Target motion analysis with unknown measurement noise variance. Proc. 20th Int. Conf. on Information Fusion, p.1663–1670. https://doi.org/10.23919/ICIF.2017.8009853
Rosti, A.V.I., Gales, M.J.F., 2003. Switching linear dynamical systems for speech recognition. UK Speech Meeting.
Roth, M., Özkan, E., Gustafsson, F., 2013. A Student’s t filter for heavy tailed process and measurement noise. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.5770–5774. https://doi.org/10.1109/ICASSP.2013.6638770
Roth, M., Hendeby, G., Gustafsson, F., 2016. Nonlinear Kalman filters explained: a tutorial on moment computations and sigma point methods. J. Adv. Inform. Fus., 11(1):47–70.
Roth, M., Ardeshiri, T., Özkan, E., et al., 2017a. Robust Bayesian filtering and smoothing using student’s t distribution. arXiv:1703.02428. http://arxiv.org/abs/1703.02428
Roth, M., Hendeby, G., Fritsche, C., et al., 2017b. The ensemble Kalman filter: a signal processing perspective. arXiv:1702.08061. http://arxiv.org/abs/1702.08061
Ru, J., Jilkov, V.P., Li, X.R., et al., 2009. Detection of target maneuver onset. IEEE Trans. Aerosp. Electron. Syst., 45(2):536–554. https://doi.org/10.1109/TAES.2009.5089540
Runnalls, A.R., 2007. Kullback-Leibler approach to Gaussian mixture reduction. IEEE Trans. Aerosp. Electron. Syst., 43(3):989–999. https://doi.org/10.1109/TAES.2007.4383588
Salmond, D.J., 1990. Mixture reduction algorithms for target tracking in clutter. SPIE, 1305:434–445. https://doi.org/10.1117/12.21610
Särkkä, S., Hartikainen, J., Svensson, L., et al., 2016. On the relation between Gaussian process quadratures and sigma-point methods. J. Adv. Inform. Fus., 11(1):31–46. https://doi.org/10.1016/j.automatica.2014.08.030
Sarmavuori, J., Särkkä, S., 2012. Fourier-Hermite Kalman filter. IEEE Trans. Autom. Contr., 57(6):1511–1515. https://doi.org/10.1109/TAC.2011.2174667
Saul, L.K., Jordan, M.I., 1999. Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones. Mach. Learn., 37(1):75–87. https://doi.org/10.1023/A:1007649326333
Scardua, L.A., da Cruz, J.J., 2017. Complete offline tuning of the unscented Kalman filter. Automatica, 80:54–61. https://doi.org/10.1016/j.automatica.2017.01.008
Schieferdecker, D., Huber, M.F., 2009. Gaussian mixture reduction via clustering. 12th Int. Conf. on Information Fusion, p.1536–1543.
Šimandl, M., Duník, J., 2009. Derivative-free estimation methods: new results and performance analysis. Automatica, 45(7):1749–1757. https://doi.org/10.1016/j.automatica.2009.03.008
Šimandl, M., Královec, J., Söderström, T., 2006. Advanced point-mass method for nonlinear state estimation. Automatica, 42(7):1133–1145. https://doi.org/10.1016/j.automatica.2006.03.010
Simon, D., 2006. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, New York, USA.
Simon, D., 2010. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Contr. Theory Appl., 4(8):1303–1318. https://doi.org/10.1049/iet-cta.2009.0032
Singpurwalla, N.D., Polson, N.G., Soyer, R., 2017. From least squares to signal processing and particle filtering. Technometrics, 2017:1–15 https://doi.org/10.1080/00401706.2017.1341341
Smith, L.A., Cuellar, M.C., Du, H., et al., 2010. Exploiting dynamical coherence: a geometric approach to parameter estimation in nonlinear models. Phys. Lett. A, 374(26):2618–2623. https://doi.org/10.1016/j.physleta.2010.04.032
Snidaro, L., García, J., Llinas, J., 2015. Context-based information fusion: a survey and discussion. Inform. Fus., 25(Supplement C):16–31. https://doi.org/10.1016/j.inffus.2015.01.002
Song, P., 2000. Monte Carlo Kalman filter and smoothing for multivariate discrete state space models. Can. J. Statist., 28(3):641–652. https://doi.org/10.2307/3315971
Sorenson, H.W., 1970. Least-squares estimation: from Gauss to Kalman. IEEE Spectr., 7(7):63–68. https://doi.org/10.1109/MSPEC.1970.5213471
Sorenson, H., Alspach, D., 1971. Recursive Bayesian estimation using Gaussian sums. Automatica, 7(4):465–479. https://doi.org/10.1016/0005-1098(71)90097-5
Sornette, D., Ide, K., 2001. The Kalman–Lévy filter. Phys. D, 151(2-4):142174. https://doi.org/10.1016/S0167-2789(01)00228-7
Spinello, D., Stilwell, D.J., 2010. Nonlinear estimation with state-dependent Gaussian observation noise. IEEE Trans. Autom. Contr., 55(6):1358–1366. https://doi.org/10.1109/TAC.2010.2042006
Stano, P., Lendek, Z., Braaksma, J., et al., 2013. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey. IEEE Trans. Cybern., 43(6):1607–1624. https://doi.org/10.1109/TSMCC.2012.2230254
Steinbring, J., Hanebeck, U.D., 2014. Progressive Gaussian filtering using explicit likelihoods. 17th Int. Conf. on Information Fusion, p.1–8.
Stoica, P., Babu, P., 2011. The Gaussian data assumption leads to the largest Cramér-Rao bound [lecture notes]. IEEE Signal Process. Mag., 28(3):132–133. https://doi.org/10.1109/MSP.2011.940411
Stoica, P., Moses, R.L., 1990. On biased estimators and the unbiased Cramér-Rao lower bound. Signal Process., 21(4):349350. https://doi.org/10.1016/0165-1684(90)90104-7
Straka, O., Duník, J., Šimandl, M., 2012. Truncation nonlinear filters for state estimation with nonlinear inequality constraints. Automatica, 48(2):273–286. https://doi.org/10.1016/j.automatica.2011.11.002
Straka, O., Duník, J., Šimandl, M., 2014. Unscented Kalman filter with advanced adaptation of scaling parameter. Automatica, 50(10):2657–2664. https://doi.org/10.1016/j.automatica.2014.08.030
Su, J., Chen, W.H., 2017. Model-based fault diagnosis system verification using reachability analysis. IEEE Trans. Syst. Man Cybern. Syst., 99:1–10. https://doi.org/10.1109/TSMC.2017.2710132
Su, J., Li, B., Chen, W.H., 2015a. On existence, optimality and asymptotic stability of the Kalman filter with partially observed inputs. Automatica, 53:149–154. https://doi.org/10.1016/j.automatica.2014.12.044
Su, J., Li, B., Chen, W.H., 2015b. Simultaneous state and input estimation with partial information on the inputs. Syst. Sci. Contr. Eng., 3(1):445–452. https://doi.org/10.1080/21642583.2015.1082512
Su, J., Chen, W.H., Yang, J., 2016. On relationship between time-domain and frequency-domain disturbance observers and its applications. J. Dyn. Syst. Meas. Contr., 138(9):091013. https://doi.org/10.1115/1.4033631
Svensson, A., Schön, T.B., Lindsten, F., 2017. Learning of state-space models with highly informative observations: a tempered sequential Monte Carlo solution. arXiv:1702.01618. http://arxiv.org/abs/1702.01618
Tahk, M., Speyer, J.L., 1990. Target tracking problems subject to kinematic constraints. IEEE Trans. Autom. Contr., 35(3):324–326. https://doi.org/10.1109/9.50348
Teixeira, B.O., Tôrres, L.A., Aguirre, L.A., et al., 2010. On unscented Kalman filtering with state interval constraints. J. Process Contr., 20(1):45–57. https://doi.org/10.1016/j.jprocont.2009.10.007
Terejanu, G., Singla, P., Singh, T., et al., 2011. Adaptive Gaussian sum filter for nonlinear Bayesian estimation. IEEE Trans. Autom. Contr., 56(9):2151–2156. https://doi.org/10.1109/TAC.2011.2141550
Tichavsky, P., Muravchik, C.H., Nehorai, A., 1998. Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process., 46(5):1386–1396. https://doi.org/10.1109/78.668800
Tipping, M.E., Lawrence, N.D., 2005. Variational inference for Student-t models: robust Bayesian interpolation and generalised component analysis. Neurocomputing, 69(1–3): 123–141. https://doi.org/10.1016/j.neucom.2005.02.016
van der Merwe, R., Doucet, A., de Freitas, N., et al., 2000. The unscented particle filter. Proc. NIPS, p.563–569.
van Trees, H.L., 1968. Detection, Estimation and Modulation Theory. Wiley, New York, USA.
van Trees, H.L., Bell, K.L., 2007. Bayesian bounds for parameter estimation and nonlinear filtering/tracking. IET Radar Sonar Navig., 3(3):285–286. https://doi.org/10.1049/iet-rsn:20099030
Vo, B.N., Ma, W.K., 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process., 54(11):4091–4104. https://doi.org/10.1109/TSP.2006.881190
Wang, J.M., Fleet, D.J., Hertzmann, A., 2008. Gaussian process dynamical models for human motion. IEEE Trans. Patt. Anal. Mach. Intell., 30(2):283–298. https://doi.org/10.1109/TPAMI.2007.1167
Wang, X., Fu, M., Zhang, H., 2012. Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Trans. Mob. Comput., 11(4):567–576. https://doi.org/10.1109/TMC.2011.59
Wang, X., Liang, Y., Pan, Q., et al., 2014. Design and implementation of Gaussian filter for nonlinear system with randomly delayed measurements and correlated noises. Appl. Math. Comput., 232:1011–1024. https://doi.org/10.1016/j.amc.2013.12.168
Wang, X., Liang, Y., Pan, Q., et al., 2015. Nonlinear Gaussian smoothers with colored measurement noise. IEEE Trans. Autom. Contr., 60(3):870–876. https://doi.org/10.1109/TAC.2014.2337991
Wang, X., Song, B., Liang, Y., et al., 2017. EM-based adaptive divided difference filter for nonlinear system with multiplicative parameter. Int. J. Robust Nonl. Contr., 27(13):2167–2197. https://doi.org/10.1002/rnc.3674
Wen, W., Durrant-Whyte, H.F., 1992. Model-based multisensor data fusion. Proc. IEEE Int. Conf. on Robotics and Automation, p.1720–1726. https://doi.org/10.1109/ROBOT.1992.220130
Williams, J.L., Maybeck, P.S., 2006. Cost-function-based hypothesis control techniques for multiple hypothesis tracking. Math. Comput. Model., 43(9–10): 976–989. https://doi.org/10.1016/j.mcm.2005.05.022
Wu, Y., Hu, D., Wu, M., et al., 2006. A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process., 54(8):2910–2921. https://doi.org/10.1109/TSP.2006.875389
Wu, Z., Shi, J., Zhang, X., et al., 2015. Kernel recursive maximum correntropy. Signal Process., 117:11–16. https://doi.org/10.1016/j.sigpro.2015.04.024
Xu, L., Li, X.R., Duan, Z., et al., 2013. Modeling and state estimation for dynamic systems with linear equality constraints. IEEE Trans. Signal Process., 61(11):2927–2939. https://doi.org/10.1109/TSP.2013.2255045
Xu, L., Li, X.R., Duan, Z., 2016. Hybrid grid multiple-model estimation with application to maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst., 52(1):122–136. https://doi.org/10.1109/TAES.2015.140423
Yang, C., Blasch, E., 2009. Kalman filtering with nonlinear state constraints. IEEE Trans. Aerosp. Electron. Syst., 45(1):70–84. https://doi.org/10.1109/TAES.2009.4805264
Yang, T., Laugesen, R.S., Mehta, P.G., et al., 2016. Multivariable feedback particle filter. Automatica, 71:10–23. https://doi.org/10.1016/j.automatica.2016.04.019
Yang, Y., He, H., Xu, G., 2001. Adaptively robust filtering for kinematic geodetic positioning. J. Geod., 75(2–3): 109–116. https://doi.org/10.1007/s001900000157
Yi, D., Su, J., Liu, C., et al., 2016. Data-driven situation awareness algorithm for vehicle lane change. 19th IEEE Int. Conf. on Intelligent Transportation Systems, p.998–1003. https://doi.org/10.1109/ITSC.2016.7795677
Yong, S.Z., Zhu, M., Frazzoli, E., 2016. A unified filter for simultaneous input and state estimation of linear discrete-time stochastic systems. Automatica, 63:321–329. https://doi.org/10.1016/j.automatica.2015.10.040
Zanetti, R., 2012. Recursive update filtering for nonlinear estimation. IEEE Trans. Autom. Contr., 57(6):1481–1490. https://doi.org/10.1109/TAC.2011.2178334
Zen, H., Tokuda, K., Kitamura, T., 2007. Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic feature vector sequences. Comput. Speech Lang., 21(1):153–173. https://doi.org/10.1016/J.CSL.2006.01.002
Zhan, R., Wan, J., 2007. Iterated unscented Kalman filter for passive target tracking. IEEE Trans. Aerosp. Electron. Syst., 43(3):1155–1163. https://doi.org/10.1109/TAES.2007.4383605
Zhang, C., Zhi, R., Li, T., et al., 2016. Adaptive Mestimation for robust cubature Kalman filtering. Sensor Signal Processing for Defence, p.114–118. https://doi.org/10.1109/SSPD.2016.7590586
Zhang, Y., Huang, Y., Li, N., et al., 2015. Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Process., 114:112–116. https://doi.org/10.1016/j.sigpro.2015.02.022
Zhao, S., Shmaliy, Y.S., Liu, F., 2016a. Fast Kalman-like optimal unbiased FIR filtering with applications. IEEE Trans. Signal Process., 64(9):2284–2297. https://doi.org/10.1109/TSP.2016.2516960
Zhao, S., Shmaliy, Y.S., Liu, F., et al., 2016b. Unbiased, optimal, and in-betweens: the trade-off in discrete finite impulse response filtering. IET Signal Process., 10(4):325–334. https://doi.org/10.1049/iet-spr.2015.0360
Zheng, Y., Ozdemir, O., Niu, R., et al., 2012. New conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans. Signal Process., 60(10):5549–5556. https://doi.org/10.1109/TSP.2012.2205686
Zhou, D.H., Frank, P.M., 1996. Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis. Int. J. Contr., 65(2):295–307. https://doi.org/10.1080/00207179608921698