Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

Tiancheng Li1, Jinya Su2, Wei Liu3, Juan M. Corchado1
1School of Sciences, University of Salamanca, Salamanca, 37007, Spain
2Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK
3Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, S1 4ET, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adurthi, N., Singla, P., Singh, T., 2017. Conjugate unscented transformation: applications to estimation and control. J. Dyn. Syst. Meas. Contr., 140(3):030907. https://doi.org/10.1115/1.4037783

Afshari, H., Gadsden, S., Habibi, S., 2017. Gaussian filters for parameter and state estimation: a general review of theory and recent trends. Signal Process., 135:218–238. https://doi.org/10.1016/j.sigpro.2017.01.001

Agamennoni, G., Nebot, E.M., 2014. Robust estimation in non-linear state-space models with state-dependent noise. IEEE Trans. Signal Process., 62(8):2165–2175. https://doi.org/10.1109/TSP.2014.2305636

Ali-Loytty, S.S., 2010. Box Gaussian mixture filter. IEEE Trans. Autom. Contr., 55(9):2165–2169. https://doi.org/10.1109/TAC.2010.2051486

Arasaratnam, I., Haykin, S., 2008. Square-root quadrature Kalman filtering. IEEE Trans. Signal Process., 56(6):2589–2593. https://doi.org/10.1109/TSP.2007.914964

Arasaratnam, I., Haykin, S., 2009. Cubature Kalman filters. IEEE Trans. Autom. Contr., 54(6):1254–1269. https://doi.org/10.1109/TAC.2009.2019800

Aravkin, A., Burke, J.V., Pillonetto, G., 2012. Robust and trend-following Kalman smoothers using Student’s t. IFAC Proc. Vol., 45(16):1215–1220. https://doi.org/10.3182/20120711-3-BE-2027.00283

Ardeshiri, T., Granström, K., Ozkan, E., et al., 2015. Greedy reduction algorithms for mixtures of exponential family. IEEE Signal Process. Lett., 22(6):676–680. https://doi.org/10.1109/LSP.2014.2367154

Arulampalam, M.S., Maskell, S., Gordon, N., et al., 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50(2):174–188. https://doi.org/10.1109/78.978374

Azam, S.E., Chatzi, E., Papadimitriou, C., 2015. A dual Kalman filter approach for state estimation via outputonly acceleration measurements. Mech. Syst. Signal Process., 60–61:866–886. https://doi.org/10.1016/j.ymssp.2015.02.001

Bavdekar, V.A., Deshpande, A.P., Patwardhan, S.C., 2011. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Contr., 21(4):585–601. https://doi.org/10.1016/j.jprocont.2011.01.001

Bell, B.M., Cathey, F.W., 1993. The iterated Kalman filter update as a Gauss–Newton method. IEEE Trans. Autom. Contr., 38(2):294–297. https://doi.org/10.1109/9.250476

Bielecki, T.R., Jakubowski, J., Niewegłowski, M., 2017. Conditional Markov chains: properties, construction and structured dependence. Stoch. Process. Their Appl., 127(4):1125–1170. https://doi.org/10.1016/j.spa.2016.07.010

Bilik, I., Tabrikian, J., 2010. MMSE-based filtering in presence of non-Gaussian system and measurement noise. IEEE Trans. Aerosp. Electron. Syst., 46(3):1153–1170. https://doi.org/10.1109/TAES.2010.5545180

Bilmes, J.A., 1999. Buried Markov models for speech recognition. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.713–716. https://doi.org/10.1109/ICASSP.1999.759766

Bogler, P.L., 1987. Tracking a maneuvering target using input estimation. IEEE Trans. Aerosp. Electron. Syst., 23(3):298–310. https://doi.org/10.1109/TAES.1987.310826

Bordonaro, S., Willett, P., Bar-Shalom, Y., 2014. Decorrelated unbiased converted measurement Kalman filter. IEEE Trans. Aerosp. Electron. Syst., 50(2):1431–1444. https://doi.org/10.1109/TAES.2014.120563

Bordonaro, S., Willett, P., Bar-Shalom, Y., 2017. Consistent linear tracker with converted range, bearing and range rate measurements. IEEE Trans. Aerosp. Electron. Syst., 53(6):3135–3149. https://doi.org/10.1109/TAES.2017.2730980

Bugallo, M.F., Elvira, V., Martino, L., et al., 2017. Adaptive importance sampling: the past, the present, and the future. IEEE Signal Process. Mag., 34(4):60–79. https://doi.org/10.1109/MSP.2017.2699226

Cappé, O., Godsill, S.J., Moulines, E., 2007. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE, 95(5):899–924. https://doi.org/10.1109/JPROC.2007.893250

Carrassi, A., Bocquet, M., Bertino, L., et al., 2017. Data assimilation in the geosciences—an overview on methods, issues and perspectives. arXiv:1709.02798. http://arxiv.org/abs/1709.02798

Chang, L., Hu, B., Li, A., et al., 2013. Transformed unscented Kalman filter. IEEE Trans. Autom. Contr., 58(1):252–257. https://doi.org/10.1109/TAC.2012.2204830

Chen, B., Principe, J.C., 2012. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett., 19(8):491–494. https://doi.org/10.1109/LSP.2012.2204435

Chen, B., Liu, X., Zhao, H., et al., 2017. Maximum correntropy Kalman filter. Automatica, 76:70–77. https://doi.org/10.1016/j.automatica.2016.10.004

Chen, F.C., Hsieh, C.S., 2000. Optimal multistage Kalman estimators. IEEE Trans. Autom. Contr., 45(11):2182–2188. https://doi.org/10.1109/9.887678

Chen, H.D., Chang, K.C., Smith, C., 2010. Constraint optimized weight adaptation for Gaussian mixture reduction. SPIE, 7697:76970N. https://doi.org/10.1117/12.851993

Chen, R., Liu, J.S., 2000. Mixture Kalman filters. J. R. Stat. Soc. Ser. B, 62(3):493–508. https://doi.org/10.1111/1467-9868.00246

Cheng, Y., Ye, H., Wang, Y., et al., 2009. Unbiased minimum-variance state estimation for linear systems with unknown input. Automatica, 45(2):485–491. https://doi.org/10.1016/j.automatica.2008.08.009

Clark, J.M.C., Vinter, R.B., Yaqoob, M.M., 2007. Shifted Rayleigh filter: a new algorithm for bearings-only tracking. IEEE Trans. Aerosp. Electron. Syst., 43(4):1373–1384. https://doi.org/10.1109/TAES.2007.4441745

Crassidis, J.L., Markley, F.L., Cheng, Y., 2007. Survey of nonlinear attitude estimation methods. J. Guid. Contr. Dyn., 30(1):12–28. https://doi.org/10.2514/1.22452

Crouse, D.F., Willett, P., Pattipati, K., et al., 2011. A look at Gaussian mixture reduction algorithms. 14th Int. Conf. on Information Fusion, p.1–8.

Darouach, M., Zasadzinski, M., 1997. Unbiased minimum variance estimation for systems with unknown exogenous inputs. Automatica, 33(4):717–719. https://doi.org/10.1016/S0005-1098(96)00217-8

Daum, F., Huang, J., 2010. Generalized particle flow for nonlinear filters. SPIE, 7698:76980I. https://doi.org/10.1117/12.839421

Deisenroth, M.P., Turner, R.D., Huber, M.F., et al., 2012. Robust filtering and smoothing with Gaussian processes. IEEE Trans. Autom. Contr., 57(7):1865–1871. https://doi.org/10.1109/TAC.2011.2179426

del Moral, P., Arnaud, D., 2014. Particle methods: an introduction with applications. Proc. ESAIM, 44:1–46. https://doi.org/10.1051/proc/201444001

DeMars, K.J., Bishop, R.H., Jah, M.K., 2013. Entropybased approach for uncertainty propagation of nonlinear dynamical systems. J. Guid. Contr. Dyn., 36(4):1047–1057. https://doi.org/10.2514/1.58987

Djurić, P.M., Miguez, J., 2002. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.1621–1624. https://doi.org/10.1109/ICASSP.2002.5744928

Dong, H., Wang, Z., Gao, H., 2010. Robust H ∞ filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts. IEEE Trans. Signal Process., 58(4):1957–1966. https://doi.org/10.1109/TSP.2009.2038965

Duan, Z., Li, X.R., 2013. The role of pseudo measurements in equality-constrained state estimation. IEEE Trans. Aerosp. Electron. Syst., 49(3):1654–1666. https://doi.org/10.1109/TAES.2013.6558010

Duan, Z., Li, X.R., 2015. Analysis, design, and estimation of linear equality-constrained dynamic systems. IEEE Trans. Aerosp. Electron. Syst., 51(4):2732–2746. https://doi.org/10.1109/TAES.2015.140441

Duník, J., Šimandl, M., Straka, O., 2010. Multiple-model filtering with multiple constraints. Proc. American Control Conf., p.6858–6863. https://doi.org/10.1109/ACC.2010.5531573

Duník, J., Straka, O., Šimandl, M., 2013. Stochastic integration filter. IEEE Trans. Autom. Contr., 58(6):1561–1566. https://doi.org/10.1109/TAC.2013.2258494

Duník, J., Straka, O., Šimandl, M., et al., 2015. Randompoint-based filters: analysis and comparison in target tracking. IEEE Trans. Aerosp. Electron. Syst., 51(2):1403–1421. https://doi.org/10.1109/TAES.2014.130136

Duník, J., Straka, O., Mallick, M., et al., 2016. Survey of nonlinearity and non-Gaussianity measures for state estimation. 19th Int. Conf. on Information Fusion, p.1845–1852.

Duník, J., Straka, O., Ajgl, J., et al., 2017a. From competitive to cooperative filter design. Proc. 20th Int. Conf. on Information Fusion, p.235–243. https://doi.org/10.23919/ICIF.2017.8009652

Duník, J., Straka, O., Kost, O., et al., 2017b. Noise covariance matrices in state-space models: a survey and comparison of estimation methods—part I. Int. J. Adapt. Contr. Signal Process., 31(11):1505–1543. https://doi.org/10.1002/acs.2783

Eldar, Y.C., 2008. Rethinking biased estimation: improving maximum likelihood and the Cramér-Rao bound. Found. Trends Signal Process., 1(4):305–449. https://doi.org/10.1561/2000000008

Evensen, G., 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn., 53(4):343–367. https://doi.org/10.1007/s10236-003-0036-9

Fan, H., Zhu, Y., Fu, Q., 2011. Impact of mode decision delay on estimation error for maneuvering target interception. IEEE Trans. Aerosp. Electron. Syst., 47(1):702–711. https://doi.org/10.1109/TAES.2011.5705700

Fang, H., de Callafon, R.A., 2012. On the asymptotic stability of minimum-variance unbiased input and state estimation. Automatica, 48(12):3183–3186. https://doi.org/10.1016/j.automatica.2012.08.039

Faubel, F., McDonough, J., Klakow, D., 2009. The split and merge unscented Gaussian mixture filter. IEEE Signal Process. Lett., 16(9):786–789. https://doi.org/10.1109/LSP.2009.2024859

Friedland, B., 1969. Treatment of bias in recursive filtering. IEEE Trans. Autom. Contr., 14(4):359–367. https://doi.org/10.1109/TAC.1969.1099223

Frigola-Alcade, R., 2015. Bayesian Time Series Learning with Gaussian Pocesses. PhD Thesis, University of Cambridge, Cambridge, UK.

Fritsche, C., Orguner, U., Gustafsson, F., 2016. On parametric lower bounds for discrete-time filtering. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.4338–4342. https://doi.org/10.1109/ICASSP.2016.7472496

García-Fernández, A.F., Svensson, L., 2015. Gaussian map filtering using Kalman optimization. IEEE Trans. Autom. Contr., 60(5):1336–1349. https://doi.org/10.1109/TAC.2014.2372909

García-Fernández, A.F., Morelande, M.R., Grajal, J., et al., 2015a. Adaptive unscented Gaussian likelihood approximation filter. Automatica, 54:166–175. https://doi.org/10.1016/j.automatica.2015.02.005

García-Fernández, A.F., Svensson, L., Morelande, M.R., et al., 2015b. Posterior linearization filter: principles and implementation using sigma points. IEEE Trans. Signal Process., 63(20):5561–5573. https://doi.org/10.1109/TSP.2015.2454485

Geeter, J.D., Brussel, H.V., Schutter, J.D., et al., 1997. A smoothly constrained Kalman filter. IEEE Trans. Patt. Anal. Mach. Intell., 19(10):1171–1177. https://doi.org/10.1109/34.625129

Gerstner, T., Griebel, M., 1998. Numerical integration using sparse grids. Numer. Algor., 18(3):209–232. https://doi.org/10.1023/A:1019129717644

Ghahremani, E., Kamwa, I., 2011. Dynamic state estimation in power system by applying the extended Kalman filter with unknown inputs to phasor measurements. IEEE Trans. Power Syst., 26(4):2556–2566. https://doi.org/10.1109/TPWRS.2011.2145396

Ghoreyshi, A., Sanger, T.D., 2015. A nonlinear stochastic filter for continuous-time state estimation. IEEE Trans. Autom. Contr., 60(8):2161–2165. https://doi.org/10.1109/TAC.2015.2409910

Gigerenzer, G., Brighton, H., 2009. Homo heuristicus: why biased minds make better inferences. Top. Cogn. Sci., 1(1):107–143. https://doi.org/10.1111/j.1756-8765.2008.01006.x

Gillijns, S., Moor, B.D., 2007. Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica, 43(5):934–937. https://doi.org/10.1016/j.automatica.2006.11.016

Girón, F.J., Rojano, J.C., 1994. Bayesian Kalman filtering with elliptically contoured errors. Biometrika, 81(2):390–395.

Godsill, S., Clapp, T., 2001. Improvement strategies for Monte Carlo particle filters. In: Doucet, A., de Freitas, N., Gordon, N. (Eds.), Sequential Monte Carlo Methods in Practice. Springer, New York, USA. https://doi.org/10.1007/978-1-4757-3437-9_7

Gordon, N., Percival, J., Robinson, M., 2003. The Kalman-Lévy filter and heavy-tailed models for tracking manoeuvring targets. Proc. 6th Int. Conf. on Information Fusion, p.1024–1031. https://doi.org/10.1109/ICIF.2003.177351

Gorman, J.D., Hero, A.O., 1990. Lower bounds for parametric estimation with constraints. IEEE Trans. Inform. Theory, 36(6):1285–1301. https://doi.org/10.1109/18.59929

Granström, K., Willett, P., Bar-Shalom, Y., 2015. Systematic approach to IMM mixing for unequal dimension states. IEEE Trans. Aerosp. Electron. Syst., 51(4):2975–2986. https://doi.org/10.1109/TAES.2015.150015

Grewal, M.S., Andrews, A.P., 2014. Kalman Filtering: Theory and Practice with MATLAB. Wiley-IEEE Press, New York, USA.

Guo, Y., Fan, K., Peng, D., et al., 2015. A modified variable rate particle filter for maneuvering target tracking. Front. Inform. Technol. Electron. Eng., 16(11):985–994. https://doi.org/10.1631/FITEE.1500149

Guo, Y., Tharmarasa, R., Rajan, S., et al., 2016. Passive tracking in heavy clutter with sensor location uncertainty. IEEE Trans. Aerosp. Electron. Syst., 52(4):1536–1554. https://doi.org/10.1109/TAES.2016.140820

Hanebeck, U.D., Briechle, K., Rauh, A., 2003. Progressive Bayes: a new framework for nonlinear state estimation. SPIE, 5099:256–267. https://doi.org/10.1117/12.487806

Hendeby, G., 2008. Performance and Implementation Aspects of Nonlinear Filtering. PhD Thesis, Linköping University, Linköping, Sweden.

Hewett, R.J., Heath, M.T., Butala, M.D., et al., 2010. A robust null space method for linear equality constrained state estimation. IEEE Trans. Signal Process., 58(8):3961–3971. https://doi.org/10.1109/TSP.2010.2048901

Ho, Y., Lee, R., 1964. A Bayesian approach to problems in stochastic estimation and control. IEEE Trans. Autom. Contr., 9(4):333–339. https://doi.org/10.1109/TAC.1964.1105763

Hsieh, C.S., 2009. Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs. Automatica, 45(9):2149–2153. https://doi.org/10.1016/j.automatica.2009.05.004

Hsieh, C.S., 2000. Robust two-stage Kalman filters for systems with unknown inputs. IEEE Trans. Autom. Contr., 45(12):2374–2378. https://doi.org/10.1109/9.895577

Hu, X., Bao, M., Zhang, X.P., et al., 2015. Generalized iterated Kalman filter and its performance evaluation. IEEE Trans. Signal Process., 63(12):3204–3217. https://doi.org/10.1109/TSP.2015.2423266

Huang, Y., Zhang, Y., Wang, X., et al., 2015. Gaussian filter for nonlinear systems with correlated noises at the same epoch. Automatica, 60:122–126. https://doi.org/10.1016/j.automatica.2015.06.035

Huang, Y., Zhang, Y., Li, N., et al., 2016a. Design of Gaussian approximate filter and smoother for nonlinear systems with correlated noises at one epoch apart. Circ. Syst. Signal Process., 35(11):3981–4008. https://doi.org/10.1007/S00034-016-0256-0

Huang, Y., Zhang, Y., Li, N., et al., 2016b. Design of Sigma-point Kalman filter with recursive updated measurement. Circ. Syst. Signal Process., 35(5):1767–1782. https://doi.org/10.1007/s00034-015-0137-y

Huang, Y., Zhang, Y., Li, N., et al., 2017. A novel robust Student’s t-based Kalman filter. IEEE Trans. Aerosp. Electron. Syst., 53(3):1545–1554. https://doi.org/10.1109/TAES.2017.2651684

Huber, M.F., 2015. Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications. KIT Scientific Publishing, Karlsruhe, Germany.

Huber, M.F., Hanebeck, U.D., 2008. Progressive Gaussian mixture reduction. 11th Int. Conf. on Information Fusion, p.1–8.

Ishihara, S., Yamakita, M., 2009. Constrained state estimation for nonlinear systems with non-Gaussian noise. 48th IEEE Conf. on Decision Control, p.1279–1284. https://doi.org/10.1109/CDC.2009.5399627

Ito, K., Xiong, K., 2000. Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Contr., 45(5):910–927. https://doi.org/10.1109/9.855552

Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory. Academic Press, New York, USA, p.349–351.

Jia, B., Xin, M., Cheng, Y., 2012. Sparse-grid quadrature nonlinear filtering. Automatica, 48(2):327–341. https://doi.org/10.1016/j.automatica.2011.08.057

Jia, B., Xin, M., Cheng, Y., 2013. High-degree cubature Kalman filter. Automatica, 49(2):510–518. https://doi.org/10.1016/j.automatica.2012.11.014

Judd, K., 2015. Tracking an object with unknown accelerations using a shadowing filter. arXiv:1502.07743. http://arxiv.org/abs/1502.07743

Judd, K., Stemler, T., 2009. Failures of sequential Bayesian filters and the successes of shadowing filters in tracking of nonlinear deterministic and stochastic systems. Phys. Rev. E, 79(6):066206. https://doi.org/10.1103/PhysRevE.79.066206

Julier, S.J., LaViola, J.J., 2007. On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process., 55(6):2774–2784. https://doi.org/10.1109/TSP.2007.893949

Julier, S.J., Uhlmann, J.K., 2004. Unscented filtering and nonlinear estimation. Proc. IEEE, 92(3):401–422. https://doi.org/10.1109/JPROC.2003.823141

Kalman, R., 1960. A new approach to linear filtering and prediction problems. J. Basic Eng., 82(1):35–45. https://doi.org/10.1115/1.3662552

Kalogerias, D.S., Petropulu, A.P., 2016. Grid based nonlinear filtering revisited: recursive estimation asymptotic optimality. IEEE Trans. Signal Process., 64(16):4244–4259. https://doi.org/10.1109/TSP.2016.2557311

Kandepu, R., Foss, B., Imsland, L., 2008. Applying the unscented Kalman filter for nonlinear state estimation. J. Process Contr., 18(7–8): 753–768. https://doi.org/10.1016/j.jprocont.2007.11.004

Kim, K.S., Rew, K.H., 2013. Reduced order disturbance observer for discrete-time linear systems. Automatica, 49(4):968–975. https://doi.org/10.1016/j.automatica.2013.01.014

Kim, K., Shevlyakov, G., 2008. Why Gaussianity? IEEE Signal Process. Mag., 25(2):102–113. https://doi.org/10.1109/MSP.2007.913700

Kitanidis, P.K., 1987. Unbiased minimum-variance linear state estimation. Automatica, 23(6):775–778. https://doi.org/10.1016/0005-1098(87)90037-9

Ko, J., Fox, D., 2009. GP-Bayes filters: Bayesian filtering using Gaussian process prediction and observation models. Auton. Robots, 27(1):75–90. https://doi.org/10.1007/s10514-009-9119-x

Ko, S., Bitmead, R.R., 2007. State estimation for linear systems with state equality constraints. Automatica, 43(8):1363–1368. https://doi.org/10.1016/j.automatica.2007.01.017

Koch, K.R., Yang, Y., 1998. Robust Kalman filter for rank deficient observation models. J. Geod., 72(7–8): 436–441. https://doi.org/10.1007/s001900050183

Kostelich, E., Schreiber, T., 1993. Noise-reduction in chaotic time-series data: a survey of common methods. Phys. Rev. E, 48(3):1752–1763. https://doi.org/10.1103/PhysRevE.48.1752

Kotecha, J.H., Djurić, P.M., 2003a. Gaussian particle filtering. IEEE Trans. Signal Process., 51(10):2592–2601. https://doi.org/10.1109/TSP.2003.816758

Kotecha, J.H., Djurić, P.M., 2003b. Gaussian sum particle filtering. IEEE Trans. Signal Process., 51(10):2602–2612. https://doi.org/10.1109/TSP.2003.816754

Kurz, G., Gilitschenski, I., Hanebeck, U.D., 2016. Recursive Bayesian filtering in circular state spaces. IEEE Aerosp. Electron. Syst. Mag., 31(3):70–87. https://doi.org/10.1109/MAES.2016.150083

Kwon, W.H., Kim, P.S., Park, P., 1999. A receding horizon Kalman FIR filter for discrete time-invariant systems. IEEE Trans. Autom. Contr., 44(9):1787–1791. https://doi.org/10.1109/9.788554

Lan, H., Liang, Y., Yang, F., et al., 2013. Joint estimation and identification for stochastic systems with unknown inputs. IET Contr. Theory Appl., 7(10):1377–1386. https://doi.org/10.1049/iet-cta.2013.0996

Lan, J., Li, X.R., 2015. Nonlinear estimation by LMMSEbased estimation with optimized uncorrelated augmentation. IEEE Trans. Signal Process., 63(16):4270–4283. https://doi.org/10.1109/TSP.2015.2437834

Lan, J., Li, X.R., 2017. Multiple conversions of measurements for nonlinear estimation. IEEE Trans. Signal Process., 65(18):4956–4970. https://doi.org/10.1109/TSP.2017.2716901

Lan, J., Li, X.R., Jilkov, V.P., et al., 2013. Second-order Markov chain based multiple-model algorithm for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst., 49(1):3–19. https://doi.org/10.1109/TAES.2013.6404088

Lerro, D., Bar-Shalom, Y., 1993. Tracking with debiased consistent converted measurements versus EKF. IEEE Trans. Aerosp. Electron. Syst., 29(3):1015–1022. https://doi.org/10.1109/7.220948

Li, B., 2013. State estimation with partially observed inputs: a unified Kalman filtering approach. Automatica, 49(3):816–820. https://doi.org/10.1016/j.automatica.2012.12.007

Li, T., Bolić, M., Djurić, P.M., 2015a. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag., 32(3):70–86. https://doi.org/10.1109/MSP.2014.2330626

Li, T., Villarrubia, G., Sun, S., et al., 2015b. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Front. Inform. Technol. Electron. Eng., 16(11):969–984. https://doi.org/10.1631/FITEE.1500199

Li, T., Corchado, J.M., Bajo, J., et al., 2016a. Effectiveness of Bayesian filters: an information fusion perspective. Inform. Sci., 329:670–689. https://doi.org/10.1016/j.ins.2015.09.041

Li, T., Prieto, J., Corchado, J.M., 2016b. Fitting for smoothing: a methodology for continuous-time target track estimation. Int. Conf. on Indoor Positioning and Indoor Navigation, p.1–8. https://doi.org/10.1109/IPIN.2016.7743582

Li, T., Corchado, J.M., Sun, S., et al., 2017a. Clustering for filtering: multi-object detection and estimation using multiple/massive sensors. Inform. Sci., 388–389:172–190. https://doi.org/10.1016/j.ins.2017.01.028

Li, T., Corchado, J., Prieto, J., 2017b. Convergence of distributed flooding and its application for distributed Bayesian filtering. IEEE Trans. Signal Inform. Process. Netw., 3(3):580–591. https://doi.org/10.1109/TSIPN.2016.2631944

Li, T., Chen, H., Sun, S., et al., 2017c. Joint smoothing, tracking, and forecasting based on continuous-time target trajectory fitting. arXiv:1708.02196. http://arxiv.org/abs/1708.02196

Li, T., Corchado, J., Chen, H., et al., 2017d. Track a smoothly maneuvering target based on trajectory estimation. Proc. 20th Int. Conf. on Information Fusion, p.800–807. https://doi.org/10.23919/ICIF.2017.8009731

Li, T., la Prieta Pintado, F.D., Corchado, J.M., et al., 2018a. Multi-source homogeneous data clustering for multitarget detection from cluttered background with misdetection. Appl. Soft Comput., 60:436–446. https://doi.org/10.1016/j.asoc.2017.07.012

Li, T., Corchado, J., Sun, S., et al., 2018b. Partial consensus and conservative fusion of Gaussian mixtures for distributed PHD fusion. arXiv:1711.10783. http://arxiv.org/abs/1711.10783

Li, X.R., Bar-Shalom, Y., 1996. Multiple-model estimation with variable structure. IEEE Trans. Autom. Contr., 41(4):478–493. https://doi.org/10.1109/9.489270

Li, X.R., Jilkov, V.P., 2002. Survey of maneuvering target tracking: decision-based methods. SPIE, 4728:511–534. https://doi.org/10.1117/12.478535

Li, X.R., Jilkov, V.P., 2005. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst., 41(4):1255–1321. https://doi.org/10.1109/TAES.2005.1561886

Li, X.R., Jilkov, V.P., 2012. A survey of maneuvering target tracking, Part VIc: approximate nonlinear density filtering in discrete time. SPIE, 8393:83930V. https://doi.org/10.1117/12.921508

Liang, Y., An, D.X., Zhou, D.H., et al., 2004. A finitehorizon adaptive Kalman filter for linear systems with unknown disturbances. Signal Process., 84(11):2175–2194. https://doi.org/10.1016/j.sigpro.2004.06.021

Liang, Y., Zhou, D.H., Zhang, L., et al., 2008. Adaptive filtering for stochastic systems with generalized disturbance inputs. IEEE Signal Process. Lett., 15:645–648. https://doi.org/10.1109/LSP.2008.2002707

Lindley, D.V., Smith, A.F.M., 1972. Bayes estimates for the linear model. J. R. Stat. Soc. Ser. B, 34(1):1–41.

Liu, W., 2015. Optimal estimation for discrete-time linear systems in the presence of multiplicative and timecorrelated additive measurement noises. IEEE Trans. Signal Process., 63(17):4583–4593. https://doi.org/10.1109/TSP.2015.2447491

Liu, W., Pokharel, P.P., Principe, J.C., 2007. Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process., 55(11):5286–5298. https://doi.org/10.1109/TSP.2007.896065

Liu, Y., Li, X.R., 2015. Measure of nonlinearity for estimation. IEEE Trans. Signal Process., 63(9):2377–2388. https://doi.org/10.1109/TSP.2015.2405495

Liu, Y., Li, X.R., Chen, H., 2013. Generalized linear minimum mean-square error estimation with application to space-object tracking. Asilomar Conf. on Signals, Systems, and Computers, p.2133–2137. https://doi.org/10.1109/ACSSC.2013.6810685

Loxam, J., Drummond, T., 2008. Student-t mixture filter for robust, real-time visual tracking. European Conf. on Computer Vision, p.372–385. https://doi.org/10.1007/978-3-540-88690-7_28

Ma, R., Coleman, T.P., 2011. Generalizing the posterior matching scheme to higher dimensions via optimal transportation. 49th Annual Allerton Conf. on Communication, Control, and Computing, p.96–102. https://doi.org/10.1109/Allerton.2011.6120155

Mahler, R., 2014. Advances in Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood, USA.

Martino, L., Read, J., Elvira, V., et al., 2017. Cooperative parallel particle filters for online model selection and applications to urban mobility. Dig. Signal Process., 60:172–185. https://doi.org/10.1016/j.dsp.2016.09.011

Mayne, D.Q., 1963. Optimal non-stationary estimation of the parameters of a linear system with Gaussian inputs. J. Electron. Contr., 14(1):101–112. https://doi.org/10.1080/00207216308937480

Michalska, H., Mayne, D.Q., 1995. Moving horizon observers and observer-based control. IEEE Trans. Autom. Contr., 40(6):995–1006. https://doi.org/10.1109/9.388677

Mitter, S.K., Newton, N.J., 2003. A variational approach to nonlinear estimation. SIAM J. Contr. Optim., 42(5):1813–1833. https://doi.org/10.1137/S0363012901393894

Mohammaddadi, G., Pariz, N., Karimpour, A., 2017. Modal Kalman filter. Asian J. Contr., 19(2):728–738. https://doi.org/10.1002/asjc.1425

Morelande, M.R., García-Fernández, A.F., 2013. Analysis of Kalman filter approximations for nonlinear measurements. IEEE Trans. Signal Process., 61(22):5477–5484. https://doi.org/10.1109/TSP.2013.2279367

Morrison, N., 2012. Tracking Filter Engineering: the Gauss–Newton and Polynomial Filters. IET, London, UK. https://doi.org/10.1049/PBRA023E

Murphy, K.P., 2007. Conjugate Bayesian Analysis of the Gaussian Distribution. Technical Report, University of British Columbia, Vancouver, Canada.

Nadjiasngar, R., Inggs, M., 2013. Gauss–Newton filtering incorporating Levenberg–Marquardt methods for tracking. Dig. Signal Process., 23(5):1662–1667. https://doi.org/10.1016/j.dsp.2012.12.005

Nørgaard, M., Poulsen, N.K., Ravn, O., 2000. New developments in state estimation for nonlinear systems. Automatica, 36(11):1627–1638. https://doi.org/10.1016/S0005-1098(00)00089-3

Nurminen, H., Ardeshiri, T., Piché, R., et al., 2015. Robust inference for state-space models with skewed measurement noise. IEEE Signal Process. Lett., 22(11):1898–1902. https://doi.org/10.1109/LSP.2015.2437456

Nurminen, H., Piché, R., Godsill, S., 2017. Gaussian flow sigma point filter for nonlinear Gaussian state-space models. Proc. 20th Int. Conf. on Information Fusion, p.1–8. https://doi.org/10.23919/ICIF.2017.8009682

Ostendorf, M., Digalakis, V.V., Kimball, O.A., 1996. From HMM’s to segment models: a unified view of stochastic modeling for speech recognition. IEEE Trans. Speech Audio Process., 4(5):360–378. https://doi.org/10.1109/89.536930

Oudjane, N., Musso, C., 2000. Progressive correction for regularized particle filters. 3rd Int. Conf. on Information Fusion: THB2/10. https://doi.org/10.1109/IFIC.2000.859873

Park, S., Serpedin, E., Qaraqe, K., 2013. Gaussian assumption: the least favorable but the most useful [lecture notes]. IEEE Signal Process. Mag., 30(3):183–186. https://doi.org/10.1109/MSP.2013.2238691

Patwardhan, S.C., Narasimhan, S., Jagadeesan, P., et al., 2012. Nonlinear Bayesian state estimation: a review of recent developments. Contr. Eng. Pract., 20(10):933–953. https://doi.org/10.1016/j.conengprac.2012.04.003

Petrucci, D.J., 2005. Gaussian Mixture Reduction for Bayesian Target Tracking in Clutter. BiblioScholar, Sydney, Australia.

Piché, R., 2016. Cramér-Rao lower bound for linear filtering with t-distributed measurement noise. 19th Int. Conf. on Information Fusion, p.536–540.

Piché, R., Särkkä, S., Hartikainen, J., 2012. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution. IEEE Int. Workshop on Machine Learning for Signal Processing, p.1–6. https://doi.org/10.1109/MLSP.2012.6349794

Pishdad, L., Labeau, F., 2015. Analytic MMSE bounds in linear dynamic systems with Gaussian mixture noise statistics. arXiv:1505.01765. http://arxiv.org/abs/1506.07603

Qi, W., Zhang, P., Deng, Z., 2014. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances. Signal Process., 99:185–200. https://doi.org/10.1016/j.sigpro.2013.12.013

Raitoharju, M., Svensson, L., García-Fernández, Á.F., et al., 2017. Damped posterior linearization filter. arXiv:1704.01113. http://arxiv.org/abs/1704.01113

Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes for Machine Learning. MIT Press, Cambridge, USA.

Reece, S., Roberts, S., 2010. Generalised covariance union: a unified approach to hypothesis merging in tracking. IEEE Trans. Aerosp. Electron. Syst., 46(1):207–221. https://doi.org/10.1109/TAES.2010.5417157

Ristic, B., Wang, X., Arulampalam, S., 2017. Target motion analysis with unknown measurement noise variance. Proc. 20th Int. Conf. on Information Fusion, p.1663–1670. https://doi.org/10.23919/ICIF.2017.8009853

Rosti, A.V.I., Gales, M.J.F., 2003. Switching linear dynamical systems for speech recognition. UK Speech Meeting.

Roth, M., Özkan, E., Gustafsson, F., 2013. A Student’s t filter for heavy tailed process and measurement noise. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.5770–5774. https://doi.org/10.1109/ICASSP.2013.6638770

Roth, M., Hendeby, G., Gustafsson, F., 2016. Nonlinear Kalman filters explained: a tutorial on moment computations and sigma point methods. J. Adv. Inform. Fus., 11(1):47–70.

Roth, M., Ardeshiri, T., Özkan, E., et al., 2017a. Robust Bayesian filtering and smoothing using student’s t distribution. arXiv:1703.02428. http://arxiv.org/abs/1703.02428

Roth, M., Hendeby, G., Fritsche, C., et al., 2017b. The ensemble Kalman filter: a signal processing perspective. arXiv:1702.08061. http://arxiv.org/abs/1702.08061

Ru, J., Jilkov, V.P., Li, X.R., et al., 2009. Detection of target maneuver onset. IEEE Trans. Aerosp. Electron. Syst., 45(2):536–554. https://doi.org/10.1109/TAES.2009.5089540

Runnalls, A.R., 2007. Kullback-Leibler approach to Gaussian mixture reduction. IEEE Trans. Aerosp. Electron. Syst., 43(3):989–999. https://doi.org/10.1109/TAES.2007.4383588

Salmond, D.J., 1990. Mixture reduction algorithms for target tracking in clutter. SPIE, 1305:434–445. https://doi.org/10.1117/12.21610

Särkkä, S., Hartikainen, J., Svensson, L., et al., 2016. On the relation between Gaussian process quadratures and sigma-point methods. J. Adv. Inform. Fus., 11(1):31–46. https://doi.org/10.1016/j.automatica.2014.08.030

Sarmavuori, J., Särkkä, S., 2012. Fourier-Hermite Kalman filter. IEEE Trans. Autom. Contr., 57(6):1511–1515. https://doi.org/10.1109/TAC.2011.2174667

Saul, L.K., Jordan, M.I., 1999. Mixed memory Markov models: decomposing complex stochastic processes as mixtures of simpler ones. Mach. Learn., 37(1):75–87. https://doi.org/10.1023/A:1007649326333

Scardua, L.A., da Cruz, J.J., 2017. Complete offline tuning of the unscented Kalman filter. Automatica, 80:54–61. https://doi.org/10.1016/j.automatica.2017.01.008

Schieferdecker, D., Huber, M.F., 2009. Gaussian mixture reduction via clustering. 12th Int. Conf. on Information Fusion, p.1536–1543.

Šimandl, M., Duník, J., 2009. Derivative-free estimation methods: new results and performance analysis. Automatica, 45(7):1749–1757. https://doi.org/10.1016/j.automatica.2009.03.008

Šimandl, M., Královec, J., Söderström, T., 2006. Advanced point-mass method for nonlinear state estimation. Automatica, 42(7):1133–1145. https://doi.org/10.1016/j.automatica.2006.03.010

Simon, D., 2006. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, New York, USA.

Simon, D., 2010. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Contr. Theory Appl., 4(8):1303–1318. https://doi.org/10.1049/iet-cta.2009.0032

Singpurwalla, N.D., Polson, N.G., Soyer, R., 2017. From least squares to signal processing and particle filtering. Technometrics, 2017:1–15 https://doi.org/10.1080/00401706.2017.1341341

Smith, L.A., Cuellar, M.C., Du, H., et al., 2010. Exploiting dynamical coherence: a geometric approach to parameter estimation in nonlinear models. Phys. Lett. A, 374(26):2618–2623. https://doi.org/10.1016/j.physleta.2010.04.032

Snidaro, L., García, J., Llinas, J., 2015. Context-based information fusion: a survey and discussion. Inform. Fus., 25(Supplement C):16–31. https://doi.org/10.1016/j.inffus.2015.01.002

Song, P., 2000. Monte Carlo Kalman filter and smoothing for multivariate discrete state space models. Can. J. Statist., 28(3):641–652. https://doi.org/10.2307/3315971

Sorenson, H.W., 1970. Least-squares estimation: from Gauss to Kalman. IEEE Spectr., 7(7):63–68. https://doi.org/10.1109/MSPEC.1970.5213471

Sorenson, H., Alspach, D., 1971. Recursive Bayesian estimation using Gaussian sums. Automatica, 7(4):465–479. https://doi.org/10.1016/0005-1098(71)90097-5

Sornette, D., Ide, K., 2001. The Kalman–Lévy filter. Phys. D, 151(2-4):142174. https://doi.org/10.1016/S0167-2789(01)00228-7

Spinello, D., Stilwell, D.J., 2010. Nonlinear estimation with state-dependent Gaussian observation noise. IEEE Trans. Autom. Contr., 55(6):1358–1366. https://doi.org/10.1109/TAC.2010.2042006

Stano, P., Lendek, Z., Braaksma, J., et al., 2013. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey. IEEE Trans. Cybern., 43(6):1607–1624. https://doi.org/10.1109/TSMCC.2012.2230254

Steinbring, J., Hanebeck, U.D., 2014. Progressive Gaussian filtering using explicit likelihoods. 17th Int. Conf. on Information Fusion, p.1–8.

Stoica, P., Babu, P., 2011. The Gaussian data assumption leads to the largest Cramér-Rao bound [lecture notes]. IEEE Signal Process. Mag., 28(3):132–133. https://doi.org/10.1109/MSP.2011.940411

Stoica, P., Moses, R.L., 1990. On biased estimators and the unbiased Cramér-Rao lower bound. Signal Process., 21(4):349350. https://doi.org/10.1016/0165-1684(90)90104-7

Straka, O., Duník, J., Šimandl, M., 2012. Truncation nonlinear filters for state estimation with nonlinear inequality constraints. Automatica, 48(2):273–286. https://doi.org/10.1016/j.automatica.2011.11.002

Straka, O., Duník, J., Šimandl, M., 2014. Unscented Kalman filter with advanced adaptation of scaling parameter. Automatica, 50(10):2657–2664. https://doi.org/10.1016/j.automatica.2014.08.030

Su, J., Chen, W.H., 2017. Model-based fault diagnosis system verification using reachability analysis. IEEE Trans. Syst. Man Cybern. Syst., 99:1–10. https://doi.org/10.1109/TSMC.2017.2710132

Su, J., Li, B., Chen, W.H., 2015a. On existence, optimality and asymptotic stability of the Kalman filter with partially observed inputs. Automatica, 53:149–154. https://doi.org/10.1016/j.automatica.2014.12.044

Su, J., Li, B., Chen, W.H., 2015b. Simultaneous state and input estimation with partial information on the inputs. Syst. Sci. Contr. Eng., 3(1):445–452. https://doi.org/10.1080/21642583.2015.1082512

Su, J., Chen, W.H., Yang, J., 2016. On relationship between time-domain and frequency-domain disturbance observers and its applications. J. Dyn. Syst. Meas. Contr., 138(9):091013. https://doi.org/10.1115/1.4033631

Svensson, A., Schön, T.B., Lindsten, F., 2017. Learning of state-space models with highly informative observations: a tempered sequential Monte Carlo solution. arXiv:1702.01618. http://arxiv.org/abs/1702.01618

Tahk, M., Speyer, J.L., 1990. Target tracking problems subject to kinematic constraints. IEEE Trans. Autom. Contr., 35(3):324–326. https://doi.org/10.1109/9.50348

Teixeira, B.O., Tôrres, L.A., Aguirre, L.A., et al., 2010. On unscented Kalman filtering with state interval constraints. J. Process Contr., 20(1):45–57. https://doi.org/10.1016/j.jprocont.2009.10.007

Terejanu, G., Singla, P., Singh, T., et al., 2011. Adaptive Gaussian sum filter for nonlinear Bayesian estimation. IEEE Trans. Autom. Contr., 56(9):2151–2156. https://doi.org/10.1109/TAC.2011.2141550

Tichavsky, P., Muravchik, C.H., Nehorai, A., 1998. Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process., 46(5):1386–1396. https://doi.org/10.1109/78.668800

Tipping, M.E., Lawrence, N.D., 2005. Variational inference for Student-t models: robust Bayesian interpolation and generalised component analysis. Neurocomputing, 69(1–3): 123–141. https://doi.org/10.1016/j.neucom.2005.02.016

van der Merwe, R., Doucet, A., de Freitas, N., et al., 2000. The unscented particle filter. Proc. NIPS, p.563–569.

van Trees, H.L., 1968. Detection, Estimation and Modulation Theory. Wiley, New York, USA.

van Trees, H.L., Bell, K.L., 2007. Bayesian bounds for parameter estimation and nonlinear filtering/tracking. IET Radar Sonar Navig., 3(3):285–286. https://doi.org/10.1049/iet-rsn:20099030

Vo, B.N., Ma, W.K., 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process., 54(11):4091–4104. https://doi.org/10.1109/TSP.2006.881190

Wang, J.M., Fleet, D.J., Hertzmann, A., 2008. Gaussian process dynamical models for human motion. IEEE Trans. Patt. Anal. Mach. Intell., 30(2):283–298. https://doi.org/10.1109/TPAMI.2007.1167

Wang, X., Fu, M., Zhang, H., 2012. Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Trans. Mob. Comput., 11(4):567–576. https://doi.org/10.1109/TMC.2011.59

Wang, X., Liang, Y., Pan, Q., et al., 2014. Design and implementation of Gaussian filter for nonlinear system with randomly delayed measurements and correlated noises. Appl. Math. Comput., 232:1011–1024. https://doi.org/10.1016/j.amc.2013.12.168

Wang, X., Liang, Y., Pan, Q., et al., 2015. Nonlinear Gaussian smoothers with colored measurement noise. IEEE Trans. Autom. Contr., 60(3):870–876. https://doi.org/10.1109/TAC.2014.2337991

Wang, X., Song, B., Liang, Y., et al., 2017. EM-based adaptive divided difference filter for nonlinear system with multiplicative parameter. Int. J. Robust Nonl. Contr., 27(13):2167–2197. https://doi.org/10.1002/rnc.3674

Wen, W., Durrant-Whyte, H.F., 1992. Model-based multisensor data fusion. Proc. IEEE Int. Conf. on Robotics and Automation, p.1720–1726. https://doi.org/10.1109/ROBOT.1992.220130

Williams, J.L., Maybeck, P.S., 2006. Cost-function-based hypothesis control techniques for multiple hypothesis tracking. Math. Comput. Model., 43(9–10): 976–989. https://doi.org/10.1016/j.mcm.2005.05.022

Wu, Y., Hu, D., Wu, M., et al., 2006. A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process., 54(8):2910–2921. https://doi.org/10.1109/TSP.2006.875389

Wu, Z., Shi, J., Zhang, X., et al., 2015. Kernel recursive maximum correntropy. Signal Process., 117:11–16. https://doi.org/10.1016/j.sigpro.2015.04.024

Xu, L., Li, X.R., Duan, Z., et al., 2013. Modeling and state estimation for dynamic systems with linear equality constraints. IEEE Trans. Signal Process., 61(11):2927–2939. https://doi.org/10.1109/TSP.2013.2255045

Xu, L., Li, X.R., Duan, Z., 2016. Hybrid grid multiple-model estimation with application to maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst., 52(1):122–136. https://doi.org/10.1109/TAES.2015.140423

Yang, C., Blasch, E., 2009. Kalman filtering with nonlinear state constraints. IEEE Trans. Aerosp. Electron. Syst., 45(1):70–84. https://doi.org/10.1109/TAES.2009.4805264

Yang, T., Laugesen, R.S., Mehta, P.G., et al., 2016. Multivariable feedback particle filter. Automatica, 71:10–23. https://doi.org/10.1016/j.automatica.2016.04.019

Yang, Y., He, H., Xu, G., 2001. Adaptively robust filtering for kinematic geodetic positioning. J. Geod., 75(2–3): 109–116. https://doi.org/10.1007/s001900000157

Yi, D., Su, J., Liu, C., et al., 2016. Data-driven situation awareness algorithm for vehicle lane change. 19th IEEE Int. Conf. on Intelligent Transportation Systems, p.998–1003. https://doi.org/10.1109/ITSC.2016.7795677

Yong, S.Z., Zhu, M., Frazzoli, E., 2016. A unified filter for simultaneous input and state estimation of linear discrete-time stochastic systems. Automatica, 63:321–329. https://doi.org/10.1016/j.automatica.2015.10.040

Zanetti, R., 2012. Recursive update filtering for nonlinear estimation. IEEE Trans. Autom. Contr., 57(6):1481–1490. https://doi.org/10.1109/TAC.2011.2178334

Zen, H., Tokuda, K., Kitamura, T., 2007. Reformulating the HMM as a trajectory model by imposing explicit relationships between static and dynamic feature vector sequences. Comput. Speech Lang., 21(1):153–173. https://doi.org/10.1016/J.CSL.2006.01.002

Zhan, R., Wan, J., 2007. Iterated unscented Kalman filter for passive target tracking. IEEE Trans. Aerosp. Electron. Syst., 43(3):1155–1163. https://doi.org/10.1109/TAES.2007.4383605

Zhang, C., Zhi, R., Li, T., et al., 2016. Adaptive Mestimation for robust cubature Kalman filtering. Sensor Signal Processing for Defence, p.114–118. https://doi.org/10.1109/SSPD.2016.7590586

Zhang, Y., Huang, Y., Li, N., et al., 2015. Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Process., 114:112–116. https://doi.org/10.1016/j.sigpro.2015.02.022

Zhao, S., Shmaliy, Y.S., Liu, F., 2016a. Fast Kalman-like optimal unbiased FIR filtering with applications. IEEE Trans. Signal Process., 64(9):2284–2297. https://doi.org/10.1109/TSP.2016.2516960

Zhao, S., Shmaliy, Y.S., Liu, F., et al., 2016b. Unbiased, optimal, and in-betweens: the trade-off in discrete finite impulse response filtering. IET Signal Process., 10(4):325–334. https://doi.org/10.1049/iet-spr.2015.0360

Zheng, Y., Ozdemir, O., Niu, R., et al., 2012. New conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans. Signal Process., 60(10):5549–5556. https://doi.org/10.1109/TSP.2012.2205686

Zhou, D.H., Frank, P.M., 1996. Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis. Int. J. Contr., 65(2):295–307. https://doi.org/10.1080/00207179608921698

Zuo, L., Niu, R., Varshney, P.K., 2011. Conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans. Signal Process., 59(1):1–14. https://doi.org/10.1109/TSP.2010.2080268