Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors

Electrochemistry Communications - Tập 60 - Trang 21-25 - 2015
Ann Laheäär1, Patryk Przygocki1, Qamar Abbas1, François Béguin1
1Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Béguin, 2013

Roldan, 2015, An approach to classification and capacitance expressions in electrochemical capacitors technology, Phys. Chem. Chem. Phys., 17, 1084, 10.1039/C4CP05124F

Brousse, 2015, To be or not to be pseudocapacitive?, J. Electrochem. Soc., 162, A5185, 10.1149/2.0201505jes

Akinwolemiwa, 2015, Redox electrolytes in supercapacitors, J. Electrochem. Soc., 162, A5054, 10.1149/2.0111505jes

Jänes, 2009, Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide, Carbon, 47, 23, 10.1016/j.carbon.2008.07.010

Weingarth, 2013, Cycle versus voltage hold—which is the better stability test for electrochemical double layer capacitors?, J. Power Sources, 225, 84, 10.1016/j.jpowsour.2012.10.019

Gao, 2012, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte, Energy Environ. Sci., 5, 9611, 10.1039/c2ee22284a

Ratajczak, 2014, Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte, Electrochim. Acta, 130, 344, 10.1016/j.electacta.2014.02.140

Ratajczak, 2014, Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte, J. Appl. Electrochem., 44, 475, 10.1007/s10800-013-0644-0

Lota, 2009, Striking capacitance of carbon/iodide interface, Electrochem. Commun., 11, 87, 10.1016/j.elecom.2008.10.026

Roldan, 2011, Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte, J. Phys. Chem. C, 115, 17606, 10.1021/jp205100v

Khomenko, 2008, High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources, 177, 643, 10.1016/j.jpowsour.2007.11.101

Naoi, 2008, New materials and new configurations for advanced electrochemical capacitors, Interface, 17, 34

Aida, 2006, An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett., 9, A534, 10.1149/1.2349495

Fic, 2015, Interfacial redox phenomena for enhanced aqueous supercapacitors, J. Electrochem. Soc., 162, A5140, 10.1149/2.0251505jes

Bose, 2012, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22, 767, 10.1039/C1JM14468E

Hashmi, 2005, Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes, Eur. Polym. J., 41, 1373, 10.1016/j.eurpolymj.2004.12.013

Mastragostino, 2000, Polymer based supercapacitors: selection of material and cell design, 416

Mai, 2013, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nat. Commun., 4, 2923, 10.1038/ncomms3923

Laheäär, 2012, NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application, Electrochim. Acta, 82, 309, 10.1016/j.electacta.2012.04.149

Pascot, 2010, Calorimetric measurement of the heat generated by a Double-Layer Capacitor cell under cycling, Thermochim. Acta, 510, 53, 10.1016/j.tca.2010.06.022

Dandeville, 2011, Measuring time-dependent heat profiles of aqueous electrochemical capacitors under cycling, Thermochim. Acta, 526, 1, 10.1016/j.tca.2011.07.027