Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Béguin, 2013
Roldan, 2015, An approach to classification and capacitance expressions in electrochemical capacitors technology, Phys. Chem. Chem. Phys., 17, 1084, 10.1039/C4CP05124F
Brousse, 2015, To be or not to be pseudocapacitive?, J. Electrochem. Soc., 162, A5185, 10.1149/2.0201505jes
Akinwolemiwa, 2015, Redox electrolytes in supercapacitors, J. Electrochem. Soc., 162, A5054, 10.1149/2.0111505jes
Jänes, 2009, Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide, Carbon, 47, 23, 10.1016/j.carbon.2008.07.010
Weingarth, 2013, Cycle versus voltage hold—which is the better stability test for electrochemical double layer capacitors?, J. Power Sources, 225, 84, 10.1016/j.jpowsour.2012.10.019
Gao, 2012, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte, Energy Environ. Sci., 5, 9611, 10.1039/c2ee22284a
Ratajczak, 2014, Effect of accelerated ageing on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous electrolyte, Electrochim. Acta, 130, 344, 10.1016/j.electacta.2014.02.140
Ratajczak, 2014, Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte, J. Appl. Electrochem., 44, 475, 10.1007/s10800-013-0644-0
Lota, 2009, Striking capacitance of carbon/iodide interface, Electrochem. Commun., 11, 87, 10.1016/j.elecom.2008.10.026
Roldan, 2011, Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte, J. Phys. Chem. C, 115, 17606, 10.1021/jp205100v
Khomenko, 2008, High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources, 177, 643, 10.1016/j.jpowsour.2007.11.101
Naoi, 2008, New materials and new configurations for advanced electrochemical capacitors, Interface, 17, 34
Aida, 2006, An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett., 9, A534, 10.1149/1.2349495
Fic, 2015, Interfacial redox phenomena for enhanced aqueous supercapacitors, J. Electrochem. Soc., 162, A5140, 10.1149/2.0251505jes
Bose, 2012, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22, 767, 10.1039/C1JM14468E
Hashmi, 2005, Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes, Eur. Polym. J., 41, 1373, 10.1016/j.eurpolymj.2004.12.013
Mastragostino, 2000, Polymer based supercapacitors: selection of material and cell design, 416
Mai, 2013, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nat. Commun., 4, 2923, 10.1038/ncomms3923
Laheäär, 2012, NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application, Electrochim. Acta, 82, 309, 10.1016/j.electacta.2012.04.149
Pascot, 2010, Calorimetric measurement of the heat generated by a Double-Layer Capacitor cell under cycling, Thermochim. Acta, 510, 53, 10.1016/j.tca.2010.06.022