Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016).
Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).
Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).
Kim, J. & Manthiram, A. A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390, 265–267 (1997).
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
Zheng, F. et al. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 54, 13058–13062 (2015).
Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).
Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).
Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58, 2975–2987 (1998).
Mizushima, K., Jones, P., Wiseman, P. & Goodenough, J. B. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).
Shim, J. H., Lee, S. & Park, S. S. Effects of MgO coating on the structural and electrochemical characteristics of LiCoO2 as cathode materials for lithium ion battery. Chem. Mater. 26, 2537–2543 (2014).
Kannan, A. M., Rabenberg, L. & Manthiram, A. High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6, A16–A18 (2003).
Chen, Z. & Dahn, J. R. Improving the capacity retention of LiCoO2 cycled to 4.5V by heat-treatment. Electrochem. Solid-State Lett. 7, A11–A14 (2004).
Shim, J.-H., Lee, J., Han, S. Y. & Lee, S. Synergistic effects of coating and doping for lithium ion battery cathode materials: synthesis and characterization of lithium titanate-coated LiCoO2 with Mg doping. Electrochim. Acta 186, 201–208 (2015).
Levasseur, S., Ménétrier, M. & Delmas, C. On the LixCo1−yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies. J. Power Sources 112, 419–427 (2002).
Nobili, F. et al. Sol–gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012).
Kim, H.-S., Ko, T.-K., Na, B.-K., Cho, W. I. & Chao, B. W. Electrochemical properties of LiMxCo1−xO2 [M = Mg, Zr] prepared by sol–gel process. J. Power Sources 138, 232–239 (2004).
Jang, Y.-I. et al. Synthesis and characterization of LiAlyCo1−yO2 and LiAlyNi1−yO2. J. Power Sources 81–82, 589–593 (1999).
Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).
Adipranoto, D. S. et al. Neutron diffraction studies on structural effect for Ni-doping in LiCo1−xNixO2. Solid State Ion. 262, 92–97 (2014).
Alcántara, R. et al. X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1−yO2 compounds. J. Power Sources 81–82, 547–553 (1999).
Madhavi, S., Subba Rao, G. V., Chowdari, B. V. R. & Li, S. F. Y. Effect of Cr dopant on the cathodic behavior of LiCoO2. Electrochim. Acta 48, 219–226 (2002).
Stoyanova, R., Zhecheva, E. & Zarkova, L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions. Solid State Ion. 73, 233–240 (1994).
Gopukumar, S., Jeong, Y. & Kim, K. B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion. 159, 223–232 (2003).
Sun, Y. K., Han, J. M., Myung, S. T., Lee, S. W. & Amine, K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem. Commun. 8, 821–826 (2006).
Markevich, E., Salitra, G. & Aurbach, D. Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem. Commun. 7, 1298–1304 (2005).
Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).
Chen, Z., Lu, Z. & Dahn, J. R. Staging phase transitions in LixCoO2. J. Electrochem. Soc. 149, A1604–A1609 (2002).
Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81, 606 (1998).
Xia, H., Lu, L., Meng, S. Y. & Ceder, G. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154, A337–A342 (2007).
Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10, 587–590 (2011).
Yin, R.-Z. et al. In situ XRD investigation and thermal properties of Mg doped LiCoO2 for lithium ion batteries. J. Electrochem. Soc. 159, A253–A258 (2012).