Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology
Tài liệu tham khảo
Madern, 2000, Halophilic adaptation of enzymes, Extremophiles, 4, 91, 10.1007/s007920050142
Eichler, 2001, Biotechnological uses of archaeal extremozymes, Biotechnol. Adv., 19, 261, 10.1016/S0734-9750(01)00061-1
DasSarma, 2015, Halophiles and their enzymes: negativity put to good use, Curr. Opin. Microbiol., 25, 120, 10.1016/j.mib.2015.05.009
van den Burg, 2003, Extremophiles as a source for novel enzymes, Curr. Opin. Microbiol., 6, 213, 10.1016/S1369-5274(03)00060-2
de, 2009, Characterization of Salicola sp. IC10, a lipase- and protease-producing extreme halophile, FEMS Microbiol. Ecol., 68, 59, 10.1111/j.1574-6941.2009.00651.x
DasSarma, 2010, Halophiles, Industrial Applications
Delgado-García, 2012, Halophilic hydrolases as a new tool for the biotechnological industries, J. Sci. Food Agric., 92, 2575, 10.1002/jsfa.5860
Oren, 2008, Microbial life at high salt concentrations: phylogenetic and metabolic diversity, Saline Syst., 4, 2, 10.1186/1746-1448-4-2
Tapingkae, 2010, Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products, Enzyme Microb. Technol., 46, 92, 10.1016/j.enzmictec.2009.10.011
Litchfield, 2011, Potential for industrial products from the halophilic Archaea, J. Ind. Microbiol. Biotechnol., 38, 1635, 10.1007/s10295-011-1021-9
Ozcan, 2009, Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains, J. Ind. Microbiol. Biotechnol., 36, 105, 10.1007/s10295-008-0477-8
Collins, 2005, Xylanases, xylanase families and extremophilic xylanases, FEMS Microbiol. Rev., 29, 3, 10.1016/j.femsre.2004.06.005
Oztetik, 2014, New food for an old mouth: new enzyme for an ancient archaea, Enzyme Microb. Technol., 55, 58, 10.1016/j.enzmictec.2013.12.004
Hedi, 2009, Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid Salt Lake (Tunisia) under aerobic conditions, Int. J. Microbiol., e731786
Karan, 2012, Function and biotechnology of extremophilic enzymes in low water activity, Aquat. Biosyst., 8, 4, 10.1186/2046-9063-8-4
Cazetta, 2007, Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production, Bioresour. Technol., 98, 2824, 10.1016/j.biortech.2006.08.026
Tari, 2006, Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21, Process Biochem., 41, 659, 10.1016/j.procbio.2005.08.012
Hasan-Beikdashti, 2012, Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia, J. Taiwan Inst. Chem. Eng., 43, 670, 10.1016/j.jtice.2012.03.005
Khuri, 2010, Response surface methodology, Wiley Interdiscip. Rev. Comput. Stat., 2, 128, 10.1002/wics.73
Aliakbarian, 2008, Optimisation of olive oil extraction by means of enzyme processing aids using response surface methodology, Biochem. Eng. J., 42, 34, 10.1016/j.bej.2008.05.006
Choudhury, 2012, Application of response surface methodology to understand the interaction of media components during pullulan production by Aureobasidium pullulans RBF-4A3, Biocatal. Agric. Biotechnol., 1, 232, 10.1016/j.bcab.2012.02.003
Papagora, 2013, Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology, Food Bioprod. Process., 91, 413, 10.1016/j.fbp.2013.02.008
Plackett, 1946, The design of optimum multifactorial experiments, Biometrika, 33, 305, 10.1093/biomet/33.4.305
Li, 2008, Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology, Bioresour. Technol., 99, 5391, 10.1016/j.biortech.2007.11.017
Norberg, 1969, Proteolytic enzymes from extremely halophilic bacteria, J. Gen. Microbiol., 55, 251, 10.1099/00221287-55-2-251
Sehgal, 1960, Effect of some metal ions on the growth of Halobacterium cutirubrum, Can. J. Microbiol., 6, 165, 10.1139/m60-018
Oren, 1997, Proposed minimal standards for description of new taxa in the order Halobacteriales, Int. J. Syst. Bacteriol., 47, 233, 10.1099/00207713-47-1-233
Cui, 2011, Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria, Extrem. Life Extreme Cond., 15, 625, 10.1007/s00792-011-0393-0
DasSarma, 2013, An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea, BMC Biotechnol., 13, 112, 10.1186/1472-6750-13-112
Saito, 1963, Preparation of transforming deoxyribonucleic acid by phenol treatment, Biochim. Biophys. Acta, 72, 619, 10.1016/0926-6550(63)90386-4
Tapingkae, 2010, Degradation of histamine by extremely halophilic archaea isolated from high salt-fermented fishery products, Enzyme Microb. Technol., 46, 92, 10.1016/j.enzmictec.2009.10.011
Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Hall, 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser., 41, 95
Tamura, 2007, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596, 10.1093/molbev/msm092
Felsenstein, 1985, Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783, 10.2307/2408678
Brock, 1982, Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors, Appl. Environ. Microbiol., 44, 561, 10.1128/AEM.44.3.561-569.1982
Gao, 2009, Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology, Bioresour. Technol., 100, 4012, 10.1016/j.biortech.2009.03.013
S. Liu, L. Qiao, H. He, Q. Zhang, X. Chen, W. Zhou, et al., Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87, (2011).
Aktaş, 2006, Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM), Bioresour. Technol., 97, 2252, 10.1016/j.biortech.2005.10.039
Calegari-Santos, 2016, Carotenoid production by halophilic archaea under different culture conditions, Curr. Microbiol., 10.1007/s00284-015-0974-8
Nagaoka, 2011, Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt, Int. J. Syst. Evol. Microbiol., 61, 1149, 10.1099/ijs.0.023119-0
Grote, 2011, Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research, FEMS Microbiol. Rev., 35, 1082, 10.1111/j.1574-6976.2011.00281.x
Antón, 2002, Salinibacter ruber gen. nov. sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds, Int. J. Syst. Evol. Microbiol., 52, 485, 10.1099/00207713-52-2-485
Oren, 2012, The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence, Life, 3, 1, 10.3390/life3010001
D.R. Boone, R.W. Castenholz, Bergey’s Manual of Systematic Bacteriology: Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria, Springer Science & Business Media, (2012).
Yachai, 2008, Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand, Int. J. Syst. Evol. Microbiol., 58, 2136, 10.1099/ijs.0.65592-0
Gupta, 2007, Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA, Enzyme Microb. Technol., 42, 11, 10.1016/j.enzmictec.2007.07.019
Kanekar, 2002, Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India, Bioresour. Technol., 85, 87, 10.1016/S0960-8524(02)00018-4
Patel, 2005, Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization, Process Biochem., 40, 3569, 10.1016/j.procbio.2005.03.049
Manikandan, 2009, Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology, Bioresour. Technol., 100, 3107, 10.1016/j.biortech.2009.01.033
Manikandan, 2011, Optimization of growth medium for protease production by Haloferax Lucentensis VKMM 007 by response surface methodology, Braz. J. Microbiol., 42, 818
Vidyasagar, 2007, Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101, World J. Microbiol. Biotechnol., 23, 655, 10.1007/s11274-006-9279-1
Mevarech, 2000, Halophilic enzymes: proteins with a grain of salt, Biophys. Chem., 86, 155, 10.1016/S0301-4622(00)00126-5
Lanyi, 1974, Salt-dependent properties of proteins from extremely halophilic bacteria, Bacteriol. Rev., 38, 272, 10.1128/MMBR.38.3.272-290.1974
Reddy, 2008, Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches, Bioresour. Technol., 99, 2242, 10.1016/j.biortech.2007.05.006
Xu, 2008, Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620, Biochem. Eng. J., 39, 66, 10.1016/j.bej.2007.08.013
Choudhari, 2008, Media optimization for the production of β-carotene by Blakeslea trispora: A statistical approach, Bioresour. Technol., 99, 722, 10.1016/j.biortech.2007.01.044
Kaushik, 2006, Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus, J. Mol. Catal. B Enzym., 40, 121, 10.1016/j.molcatb.2006.02.019
Bocchini, 2002, Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology, Process Biochem., 38, 727, 10.1016/S0032-9592(02)00207-8
Ramnani, 2004, Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology, Biotechnol. Appl. Biochem., 40, 191, 10.1042/BA20030228