Approach for an improved experimental evaluation of the specific absorption rate in magnetic fluid hyperthermia

N. Iacob1,2, G. Schinteie3, P. Palade4, V. Kuncser3
1National Institute for Lasers, Plasma and Radiation Physics, Bucharest-Magurele, Romania
2Faculty of Physics, University of Bucharest, Bucharest-Magurele, Romania
3National Institute of Materials Physics, Bucharest-Magurele, Romania
4National Institute of Materials Physics, Bucharest, Magurele, Romania

Tóm tắt

A new methodology for the accurate determination of the specific absorption rate of ferrofluids with magnetite nanoparticles of average size of about 10 nm subjected to alternative current magnetic fields is proposed. A simple numerical compensation of the heating rates by the cooling rates obtained at similar temperatures is employed. Comparisons of the as-obtained adiabatic heating curves with theoretical evaluations are discussed.

Từ khóa


Tài liệu tham khảo

Arthur RM, Straube WL, Trobaugh JW, Moros EG (2005) Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperth 21(6):589–600 Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C (2013) Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J Nanopart Res 15:1874 Basel MT et al (2012) Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomed 7:297–306 Bekovic M, Hamler A (2010) Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field. IEEE Trans Magn 46(2):552–555 Bica D (1995) Preparation ofmagnetic fluids for various applications. Rom Rep Phys 47:265 Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921 Cui ZG, Piao JL, Rehman MUR, Ogawa R, Li P, Zhao Q, Kondo T, Inadera H (2014) Molecular mechanisms of hyperthermia-induced apoptosis enhanced by withaferin A. Eur J Pharmacol 723:99–107 Fernandez GV et al (2013) Mechanisms of hyperthermia in magnetic nanoparticles. J Phys D Appl Phys 46:312001 Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635 Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed 8(1):2521–2532 Huang HW, Liauth CT (2011) Therapeutical applications of heat in cancer therapy. J Med Biol Eng 32(1):1–11 Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia. J Appl Phys 111:07B306 Landsberg R, De Rowe A, Katzir A, Shtabsky A, Fliss DM, Gil Z (2009) Laser-induced hyperthermia for treatment of granulation tissue growth in rats. Otolaryngol Head Neck 140(4):480–486 Luchetti F, Canonico B, Felice MD, Burattini S, Battistelli M, Papa S, Falcieri E (2003) Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells. Histol Histopathol 18(4):1041–1052 Natividad E, Castro M, Mediano A (2009) Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J Magn Magn Mater 321:1497–1500 Natividad E, Castro M, Mediano A (2011) Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields. Appl Phys Lett 98:243119 Ortega D, Pankhurst QA (2013) Magnetic hyperthermia. Nanoscince 1:60–88 Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374 Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc al. DA (2014) Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 27(12):2023–2035 Schinteie G, Palade P, Vekas L, Iacob N, Bartha C, Kuncser V (2013) Volume fraction dependent magnetic behaviour of ferrofluids for rotating seal applications. J Phys D 46:395501 Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915 Teran FJ et al (2012) Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Appl Phys Lett 101:062413 Vafaei S, Borca-Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des 92:842–856 Wang DC et al (2012) Hyperthermia Promotes Apoptosis and Suppresses Invasion in C6 Rat Glioma Cells. Asian Pac J Cancer Prev 13(7):3239–3245 Wust P et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497 Zhao Q et al (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2(1):113–121