Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers

IEEE Access - Tập 8 - Trang 213729-213747 - 2020
Syed Farhan Alam Zaidi1, Faraz Malik Awan2, Minsoo Lee1, Honguk Woo3, Chan-Gun Lee2
1CAU Institute of Innovative Talent of Big Data, Department of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea
2Department Of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea
3Department of Software, Sungkyunkwan University, Suwon, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

srivastava, 2014, Dropout: A simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929

10.1021/ci00027a006

dogan, 2019, Fine-grained named entity recognition using ELMo and wikidata, arXiv 1904 10503

bai, 2018, Deep enhanced representation for implicit discourse relation recognition, arXiv 1807 05154

10.1093/jamia/ocz096

10.18653/v1/N18-1202

bishop, 2006, Pattern Recognition and Machine Learning

10.1109/ICASSP.2013.6639346

2018, ReLu Activations—Keras Documentation

qi, 2018, Bidirectional semantic matching with deep contextualized word embedding for chinese sentence matching, Proc CCKS-Tasks, 69

10.1371/journal.pone.0220976

dama?evicius, 2019, Sentiment analysis of lithuanian texts using traditional and deep learning approaches, Computers, 8, 4, 10.3390/computers8010004

10.1109/MCI.2018.2840738

sahu, 2018, Survey of various data reduction methods for effective bug report analysis, IJSRCSEIT, 3, 661

10.1109/ISSRE.2014.17

10.1109/COMPSAC.2014.16

10.1109/SEAA.2016.20

10.1109/TKDE.2014.2324590

xuan, 2017, Automatic bug triage using semi-supervised text classification, arXiv 1704 04769

10.1007/s10664-015-9401-9

johnson, 2016, Supervised and semi-supervised text categorization using LSTM for region embeddings, arXiv 1602 02373

10.1016/j.neucom.2005.12.126

10.1007/s11063-020-10213-y

10.1109/ACCESS.2018.2869306

2018, Initializers—Keras Documentation

10.1145/1134285.1134336

10.1109/ICSEA.2009.92

10.1109/APSEC.2011.15

10.1109/ICSE.2012.6227210

10.1109/ACSAT.2012.56

10.1109/MSR.2013.6623997

10.4304/jsw.8.9.2185-2190

10.1109/ICSME.2019.00011

yadav, 2019, Ranking of software developers based on expertise score for bug triaging, Inf Softw Technol, 112, 1, 10.1016/j.infsof.2019.03.014

10.1145/3297001.3297023

peng, 2017, Improving bug triage with relevant search, Proc Int Conf on Software Eng Knowledge Eng, 123, 10.18293/SEKE2017-041

sajedi badashian, 2015, Crowdsourced bug triaging, Proc of Int Conf in Software Maintenance and Evolution (ICSME), 506

10.1016/j.ins.2018.09.001

kumari, 2019, Quantitative quality evaluation of software products by considering summary and comments entropy of a reported bug, Entropy, 21, 91, 10.3390/e21010091

10.1007/978-3-540-89378-3_32

10.1145/3106237.3117776

10.3115/v1/D14-1162

10.1109/ACCESS.2018.2794765

10.1109/TIP.2019.2917862

10.1109/ICTC.2018.8539546

kingma, 2014, Adam: A method for stochastic optimization, arXiv 1412 6980

glorot, 2010, Understanding the difficulty of training deep feedforward neural networks, Proc 13th Int Conf Artif Intell Statist, 249

wei, 2018, Enhancing Bug Report Assignment with an Optimized Reduction of Training Set, 36

bengio, 2012, Practical recommendations for gradient-based training of deep architectures, Proc Neural Netw Tricks of the Trade, 437, 10.1007/978-3-642-35289-8_26