Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shojaei, 2015, Application of alkali-activated slag concrete in railway sleepers, Mater. Des., 69, 89, 10.1016/j.matdes.2014.12.051
Rashad, 2014, A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash, Mater. Des., 53, 1005, 10.1016/j.matdes.2013.07.074
Wang, 1994, Factors affecting the strength of alkali-activated slag, Cem. Concr. Res., 24, 1033, 10.1016/0008-8846(94)90026-4
Aydin, 2012, Mechanical and microstructural properties of heat cured alkali-activated slag mortars, Mater. Des., 35, 374, 10.1016/j.matdes.2011.10.005
Hai, 2014, Development of metakaolin-fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 55, 38, 10.1016/j.conbuildmat.2014.01.040
Zhou, 2016, A comparative study of high- and low-Al2O3 fly ash based-geopolymers: the role of mix proportion factors and curing temperature, Mater. Des., 95, 63, 10.1016/j.matdes.2016.01.084
Chao, 2010, A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, Cem. Concr. Res., 40, 1341, 10.1016/j.cemconres.2010.03.020
Brough, 2002, Sodium silicate-based alkali-activated slag mortars: part I. Strength, hydration and microstructure, Cem. Concr. Res., 32, 865, 10.1016/S0008-8846(02)00717-2
Granizo, 2002, Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction, J. Am. Ceram. Soc., 85, 225, 10.1111/j.1151-2916.2002.tb00070.x
Rashad Alaa, 2013, Properties of alkali-activated fly ash concrete blended with slag, Iran. J. Mater. Sci. Eng., 10, 57
Aydin, 2013, A ternary optimization of mineral additives of alkali activated cement mortars, Constr. Build. Mater., 43, 131, 10.1016/j.conbuildmat.2013.02.005
Sugama, 2005, Acid-resistant cements for geothermal wells: sodium silicate activated slag/fly ash blends, Adv. Cem. Res., 17, 65, 10.1680/adcr.2005.17.2.65
Lee, 2013, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Constr. Build. Mater., 47, 1201, 10.1016/j.conbuildmat.2013.05.107
García-Lodeiro, 2010, Effect on fresh C-S-H gels the simultaneous addition of alkali and aluminium, Cem. Concr. Res., 40, 27, 10.1016/j.cemconres.2009.08.004
Ismail, 2014, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos., 45, 125, 10.1016/j.cemconcomp.2013.09.006
Yip, 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35, 1688, 10.1016/j.cemconres.2004.10.042
García-Lodeiro, 2010, Effect of calcium additions on N-A-S-H cementitious gels, J. Am. Ceram. Soc., 1
García-Lodeiro, 2008, FTIR study of the sol-gel synthesis of cementitious gels: C-S-H and N-A-S-H, J. Sol-Gel Sci. Technol., 45, 63, 10.1007/s10971-007-1643-6
García-Lodeiro, 2009, Effect of alkalis on fresh C-S-H gels. FTIR analysis, Cem. Concr. Res., 39, 147, 10.1016/j.cemconres.2009.01.003
Bernal, 2013, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cem. Concr. Res., 53, 127, 10.1016/j.cemconres.2013.06.007
Sun, 2006, The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples, Cem. Concr. Res., 36, 18, 10.1016/j.cemconres.2005.03.002
Schilling, 1994, 29Si and 27Al MAS NMR of NaOH-activated blast-furnace slag, J. Am. Ceram. Soc., 77, 2363, 10.1111/j.1151-2916.1994.tb04606.x
Bonk, 2003, Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes, J. Am. Ceram. Soc., 86, 1712, 10.1111/j.1151-2916.2003.tb03545.x
Wang, 1995, Hydration products of alkali-activated slag cement, Cem. Concr. Res., 25, 561, 10.1016/0008-8846(95)00045-E
Wang, 2003, 29Si and 27Al NMR study of alkali-activated slag, Cem. Concr. Res., 33, 769, 10.1016/S0008-8846(02)01044-X
Rejmak, 2012, 29Si NMR in cement: a theoretical study on calcium silicate hydrates, J. Phys. Chem. C, 116, 9755, 10.1021/jp302218j
Fernandez, 2003, Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator, J. Am. Ceram. Soc., 86, 1389, 10.1111/j.1151-2916.2003.tb03481.x
Palacios, 2006, Effect of carbonation on alkali-activated slag paste, J. Am. Ceram. Soc., 89, 3211, 10.1111/j.1551-2916.2006.01214.x
Hakkinen, 1993, The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 1. Microstructural studies and basic mechanical properties, Cem. Concr. Res., 23, 407, 10.1016/0008-8846(93)90106-J
Park, 2016, Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures, Cem. Concr. Res., 89, 72, 10.1016/j.cemconres.2016.08.004
Peng, 2015, Microstructural and 29Si MAS NMR spectroscopic evaluations of alkali cationic effects on fly ash activation, Cem. Concr. Compos., 57, 34, 10.1016/j.cemconcomp.2014.12.005
Fernandez, 2006, Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity, Fuel, 85, 625, 10.1016/j.fuel.2005.08.014
Criado, 2008, Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS NMR survey, Micro Meso Mater., 109, 525, 10.1016/j.micromeso.2007.05.062
Fernandez, 2006, Quantitative determination of phases in the alkaline activation of fly ash. Part II: degree of reaction, Fuel, 85, 1960, 10.1016/j.fuel.2006.04.006
Kovalchuk, 2007, Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development – Part II, Fuel, 86, 315, 10.1016/j.fuel.2006.07.010
Saout, 2011, Hydration degree of alkali-activated slags: a 29Si NMR study, J. Am. Ceram. Soc., 94, 4541, 10.1111/j.1551-2916.2011.04828.x
Walkley, 2016, Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors, Cem. Concr. Res., 89, 120, 10.1016/j.cemconres.2016.08.010
Walkley, 2016, Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders, Powder Technol., 297, 17, 10.1016/j.powtec.2016.04.006
Lee, 2015, Reactivity and reaction products of alkali-activated, fly ash/slag paste, Constr. Build. Mater., 81, 303, 10.1016/j.conbuildmat.2015.02.022
Oh, 2014, Characterization of geopolymers from compositionally and physically different Class F fly ashes, Cem. Concr. Compos., 50, 16, 10.1016/j.cemconcomp.2013.10.019
Pardal, 2012, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51, 1827, 10.1021/ic202124x
Puertas, 2011, A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc., 31, 2043, 10.1016/j.jeurceramsoc.2011.04.036
Lhopital, 2015, Incorporation of aluminium in calcium-silicate-hydrates, Cem. Concr. Res., 75, 91, 10.1016/j.cemconres.2015.04.007
Garcia, 2013, Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends, Cem. Concr. Res., 52, 112, 10.1016/j.cemconres.2013.03.022
Puertas, 2003, Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes, Cem. Concr. Compos., 25, 287, 10.1016/S0958-9465(02)00059-8
Buchwald, 2007, Alkali-activated metakaolin-slag blends, performance and structure in dependence of their composition, J. Mater. Sci., 42, 3024, 10.1007/s10853-006-0525-6
Puligilla, 2015, Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction, Cem. Concr. Res., 70, 39, 10.1016/j.cemconres.2015.01.006
Fernandez, 2005, Mid-infrared spectroscopic studies of alkali activated fly ash structure, Micro Meso Mater., 86, 207, 10.1016/j.micromeso.2005.05.057
Palomo, 2004, Alkaline activation of fly ashes: nmr study of the reaction products, J. Am. Ceram. Soc., 87, 1141, 10.1111/j.1551-2916.2004.01141.x
Fernandez, 2003, Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel, 82, 2259, 10.1016/S0016-2361(03)00194-7
Merwin, 2003, 29Si and 27Al MAS NMR spectroscopy of mullite, Phys. Chem. Miner., 18, 47
Bernal, 2014, MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Concr. Res., 57, 33, 10.1016/j.cemconres.2013.12.003
Myers, 2013, Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir, 29, 5294, 10.1021/la4000473
Pardal, 2012, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51, 1827, 10.1021/ic202124x
Richardson, 2008, The calcium silicate hydrates, Cem. Concr. Res., 38, 137, 10.1016/j.cemconres.2007.11.005
Gao, 2015, Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends, Constr. Build. Mater., 80, 105, 10.1016/j.conbuildmat.2015.01.065
Gao, 2015, Properties of alkali activated slag-fly ash blends with limestone addition, Cem. Concr. Compos., 59, 119, 10.1016/j.cemconcomp.2015.01.007
Gao, 2016, Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model, Constr. Build. Mater., 119, 175, 10.1016/j.conbuildmat.2016.05.026
Jansson, 2015, Silicate species of water glass and insights for alkali-activated green cement, AIP Adv., 5, 1
Faucon, 1999, Aluminum incorporation in calcium silicate hydrates (C-S-H) depending on their Ca/Si ratio, J. Phys. Chem. B, 103, 7796, 10.1021/jp990609q
Saout, 2011, Hydration degree of alkali-activated slags: a 29Si NMR study, J. Am. Ceram. Soc., 94, 4541, 10.1111/j.1551-2916.2011.04828.x
MacKenzie, 1993, 27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence, J. Mater. Chem., 3, 1263, 10.1039/jm9930301263
Schilling, 1994, 29Si and 27Al MAS NMR of NaOH activated blast-furnace slag, J. Am. Ceram. Soc., 77, 2363, 10.1111/j.1151-2916.1994.tb04606.x
Pardal, 2009, Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions, Cem. Concr. Res., 39, 637, 10.1016/j.cemconres.2009.05.001
Ben, 2011, Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cem. Concr. Res., 41, 301, 10.1016/j.cemconres.2010.11.016
Jaarsveld, 2002, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, J. Chem. Eng., 89, 63, 10.1016/S1385-8947(02)00025-6
Engelhardt G, Michel D. High-resolution Solid-state NMR of Silicates and Zeolites, 1987.
Kumar, 2010, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci., 45, 607, 10.1007/s10853-009-3934-5
Elisabeth, 2014, Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems, Cem. Concr. Compos., 48, 108, 10.1016/j.cemconcomp.2013.11.010