Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites

Ceramics International - Tập 43 Số 15 - Trang 12408-12419 - 2017
Xiaojian Gao1,2, Qingliang Yu1, H.J.H. Brouwers1,2
1Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shojaei, 2015, Application of alkali-activated slag concrete in railway sleepers, Mater. Des., 69, 89, 10.1016/j.matdes.2014.12.051

Rashad, 2014, A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash, Mater. Des., 53, 1005, 10.1016/j.matdes.2013.07.074

Wang, 1994, Factors affecting the strength of alkali-activated slag, Cem. Concr. Res., 24, 1033, 10.1016/0008-8846(94)90026-4

Aydin, 2012, Mechanical and microstructural properties of heat cured alkali-activated slag mortars, Mater. Des., 35, 374, 10.1016/j.matdes.2011.10.005

Hai, 2014, Development of metakaolin-fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 55, 38, 10.1016/j.conbuildmat.2014.01.040

Zhou, 2016, A comparative study of high- and low-Al2O3 fly ash based-geopolymers: the role of mix proportion factors and curing temperature, Mater. Des., 95, 63, 10.1016/j.matdes.2016.01.084

Chao, 2010, A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, Cem. Concr. Res., 40, 1341, 10.1016/j.cemconres.2010.03.020

Brough, 2002, Sodium silicate-based alkali-activated slag mortars: part I. Strength, hydration and microstructure, Cem. Concr. Res., 32, 865, 10.1016/S0008-8846(02)00717-2

Granizo, 2002, Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction, J. Am. Ceram. Soc., 85, 225, 10.1111/j.1151-2916.2002.tb00070.x

Rashad Alaa, 2013, Properties of alkali-activated fly ash concrete blended with slag, Iran. J. Mater. Sci. Eng., 10, 57

Aydin, 2013, A ternary optimization of mineral additives of alkali activated cement mortars, Constr. Build. Mater., 43, 131, 10.1016/j.conbuildmat.2013.02.005

Sugama, 2005, Acid-resistant cements for geothermal wells: sodium silicate activated slag/fly ash blends, Adv. Cem. Res., 17, 65, 10.1680/adcr.2005.17.2.65

Lee, 2013, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Constr. Build. Mater., 47, 1201, 10.1016/j.conbuildmat.2013.05.107

García-Lodeiro, 2010, Effect on fresh C-S-H gels the simultaneous addition of alkali and aluminium, Cem. Concr. Res., 40, 27, 10.1016/j.cemconres.2009.08.004

Ismail, 2014, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos., 45, 125, 10.1016/j.cemconcomp.2013.09.006

Yip, 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35, 1688, 10.1016/j.cemconres.2004.10.042

García-Lodeiro, 2010, Effect of calcium additions on N-A-S-H cementitious gels, J. Am. Ceram. Soc., 1

García-Lodeiro, 2008, FTIR study of the sol-gel synthesis of cementitious gels: C-S-H and N-A-S-H, J. Sol-Gel Sci. Technol., 45, 63, 10.1007/s10971-007-1643-6

García-Lodeiro, 2009, Effect of alkalis on fresh C-S-H gels. FTIR analysis, Cem. Concr. Res., 39, 147, 10.1016/j.cemconres.2009.01.003

Bernal, 2013, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cem. Concr. Res., 53, 127, 10.1016/j.cemconres.2013.06.007

Sun, 2006, The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples, Cem. Concr. Res., 36, 18, 10.1016/j.cemconres.2005.03.002

Schilling, 1994, 29Si and 27Al MAS NMR of NaOH-activated blast-furnace slag, J. Am. Ceram. Soc., 77, 2363, 10.1111/j.1151-2916.1994.tb04606.x

Bonk, 2003, Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes, J. Am. Ceram. Soc., 86, 1712, 10.1111/j.1151-2916.2003.tb03545.x

Wang, 1995, Hydration products of alkali-activated slag cement, Cem. Concr. Res., 25, 561, 10.1016/0008-8846(95)00045-E

Wang, 2003, 29Si and 27Al NMR study of alkali-activated slag, Cem. Concr. Res., 33, 769, 10.1016/S0008-8846(02)01044-X

Rejmak, 2012, 29Si NMR in cement: a theoretical study on calcium silicate hydrates, J. Phys. Chem. C, 116, 9755, 10.1021/jp302218j

Fernandez, 2003, Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator, J. Am. Ceram. Soc., 86, 1389, 10.1111/j.1151-2916.2003.tb03481.x

Palacios, 2006, Effect of carbonation on alkali-activated slag paste, J. Am. Ceram. Soc., 89, 3211, 10.1111/j.1551-2916.2006.01214.x

Hakkinen, 1993, The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 1. Microstructural studies and basic mechanical properties, Cem. Concr. Res., 23, 407, 10.1016/0008-8846(93)90106-J

Park, 2016, Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures, Cem. Concr. Res., 89, 72, 10.1016/j.cemconres.2016.08.004

Peng, 2015, Microstructural and 29Si MAS NMR spectroscopic evaluations of alkali cationic effects on fly ash activation, Cem. Concr. Compos., 57, 34, 10.1016/j.cemconcomp.2014.12.005

Fernandez, 2006, Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity, Fuel, 85, 625, 10.1016/j.fuel.2005.08.014

Criado, 2008, Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS NMR survey, Micro Meso Mater., 109, 525, 10.1016/j.micromeso.2007.05.062

Fernandez, 2006, Quantitative determination of phases in the alkaline activation of fly ash. Part II: degree of reaction, Fuel, 85, 1960, 10.1016/j.fuel.2006.04.006

Kovalchuk, 2007, Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development – Part II, Fuel, 86, 315, 10.1016/j.fuel.2006.07.010

Saout, 2011, Hydration degree of alkali-activated slags: a 29Si NMR study, J. Am. Ceram. Soc., 94, 4541, 10.1111/j.1551-2916.2011.04828.x

Walkley, 2016, Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors, Cem. Concr. Res., 89, 120, 10.1016/j.cemconres.2016.08.010

Walkley, 2016, Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders, Powder Technol., 297, 17, 10.1016/j.powtec.2016.04.006

Lee, 2015, Reactivity and reaction products of alkali-activated, fly ash/slag paste, Constr. Build. Mater., 81, 303, 10.1016/j.conbuildmat.2015.02.022

Oh, 2014, Characterization of geopolymers from compositionally and physically different Class F fly ashes, Cem. Concr. Compos., 50, 16, 10.1016/j.cemconcomp.2013.10.019

Pardal, 2012, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51, 1827, 10.1021/ic202124x

Puertas, 2011, A model for the C-A-S-H gel formed in alkali-activated slag cements, J. Eur. Ceram. Soc., 31, 2043, 10.1016/j.jeurceramsoc.2011.04.036

Lhopital, 2015, Incorporation of aluminium in calcium-silicate-hydrates, Cem. Concr. Res., 75, 91, 10.1016/j.cemconres.2015.04.007

Garcia, 2013, Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends, Cem. Concr. Res., 52, 112, 10.1016/j.cemconres.2013.03.022

Puertas, 2003, Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes, Cem. Concr. Compos., 25, 287, 10.1016/S0958-9465(02)00059-8

Buchwald, 2007, Alkali-activated metakaolin-slag blends, performance and structure in dependence of their composition, J. Mater. Sci., 42, 3024, 10.1007/s10853-006-0525-6

Puligilla, 2015, Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction, Cem. Concr. Res., 70, 39, 10.1016/j.cemconres.2015.01.006

Fernandez, 2005, Mid-infrared spectroscopic studies of alkali activated fly ash structure, Micro Meso Mater., 86, 207, 10.1016/j.micromeso.2005.05.057

Palomo, 2004, Alkaline activation of fly ashes: nmr study of the reaction products, J. Am. Ceram. Soc., 87, 1141, 10.1111/j.1551-2916.2004.01141.x

Fernandez, 2003, Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel, 82, 2259, 10.1016/S0016-2361(03)00194-7

Merwin, 2003, 29Si and 27Al MAS NMR spectroscopy of mullite, Phys. Chem. Miner., 18, 47

Bernal, 2014, MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Concr. Res., 57, 33, 10.1016/j.cemconres.2013.12.003

Myers, 2013, Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir, 29, 5294, 10.1021/la4000473

Pardal, 2012, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51, 1827, 10.1021/ic202124x

Richardson, 2008, The calcium silicate hydrates, Cem. Concr. Res., 38, 137, 10.1016/j.cemconres.2007.11.005

Gao, 2015, Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends, Constr. Build. Mater., 80, 105, 10.1016/j.conbuildmat.2015.01.065

Gao, 2015, Properties of alkali activated slag-fly ash blends with limestone addition, Cem. Concr. Compos., 59, 119, 10.1016/j.cemconcomp.2015.01.007

Gao, 2016, Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model, Constr. Build. Mater., 119, 175, 10.1016/j.conbuildmat.2016.05.026

Jansson, 2015, Silicate species of water glass and insights for alkali-activated green cement, AIP Adv., 5, 1

Faucon, 1999, Aluminum incorporation in calcium silicate hydrates (C-S-H) depending on their Ca/Si ratio, J. Phys. Chem. B, 103, 7796, 10.1021/jp990609q

Saout, 2011, Hydration degree of alkali-activated slags: a 29Si NMR study, J. Am. Ceram. Soc., 94, 4541, 10.1111/j.1551-2916.2011.04828.x

MacKenzie, 1993, 27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence, J. Mater. Chem., 3, 1263, 10.1039/jm9930301263

Schilling, 1994, 29Si and 27Al MAS NMR of NaOH activated blast-furnace slag, J. Am. Ceram. Soc., 77, 2363, 10.1111/j.1151-2916.1994.tb04606.x

Pardal, 2009, Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions, Cem. Concr. Res., 39, 637, 10.1016/j.cemconres.2009.05.001

Ben, 2011, Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cem. Concr. Res., 41, 301, 10.1016/j.cemconres.2010.11.016

Jaarsveld, 2002, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, J. Chem. Eng., 89, 63, 10.1016/S1385-8947(02)00025-6

Engelhardt G, Michel D. High-resolution Solid-state NMR of Silicates and Zeolites, 1987.

Kumar, 2010, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci., 45, 607, 10.1007/s10853-009-3934-5

Elisabeth, 2014, Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems, Cem. Concr. Compos., 48, 108, 10.1016/j.cemconcomp.2013.11.010

Garcia-Lodeirov, 2011, Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O, Cem. Concr. Res., 41, 923, 10.1016/j.cemconres.2011.05.006