Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zollinger, 2003
Sharma, 2007, A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests, Chemosphere, 69, 48, 10.1016/j.chemosphere.2007.04.086
Kümmerer, 2009, The presence of pharmaceuticals in the environment due to human use −Present knowledge and future challenges, J. Environ. Manage., 90, 2354, 10.1016/j.jenvman.2009.01.023
Damalas, 2011, Pesticide exposure safety issues, and risk assessment indicators, Int. J. Environ. Res. Public Health, 8, 1402, 10.3390/ijerph8051402
Brillas, 2015, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review, Appl. Catal. B: Environ., 166–167, 603, 10.1016/j.apcatb.2014.11.016
Oturan, 2014, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol., 44, 2577, 10.1080/10643389.2013.829765
Glaze, 1987, The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng., 9, 335, 10.1080/01919518708552148
Buxton, 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O−) in aqueous solution, J. Phys. Chem. Ref. Data, 17, 513, 10.1063/1.555805
Janzen, 1992, Stabilities of hydroxyl radical spin adducts of PBN-type spin traps, Free Radical Biol. Med., 12, 169, 10.1016/0891-5849(92)90011-5
Chong, 2012, Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment, J. Clean. Prod., 35, 230, 10.1016/j.jclepro.2012.06.003
Sirés, 2014, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21, 8336, 10.1007/s11356-014-2783-1
Chaplin, 2014, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Processes Impacts, 16, 1182, 10.1039/C3EM00679D
Lewerenz, 2010, Photoelectrocatalysis: principles, nanoemitter applications and routes to bio-inspired system, Energy Environ. Sci., 3, 748, 10.1039/b915922n
Muñoz, 2010, Advances in photoelectrocatalysis with nanotopographical photoelectrodes, ChemPhysChem, 11, 1603, 10.1002/cphc.200900856
Augugliaro, 2015, Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals, J. Phys. Chem. Lett., 6, 1968, 10.1021/acs.jpclett.5b00294
Ochiai, 2012, Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification, J. Photoch. Photobio. C: Photochem. Rev., 13, 247, 10.1016/j.jphotochemrev.2012.07.001
Zhang, 2012, Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: an overview, Chemosphere, 88, 145, 10.1016/j.chemosphere.2012.03.020
Daghrir, 2012, Photoelectrocatalytic technologies for environmental applications, J. Photoch. Photobio. A: Chem., 238, 41, 10.1016/j.jphotochem.2012.04.009
Fujishima, 2008, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001
Li, 2009, The progress of catalytic technologies in water purification: a review, J. Environ. Sci., 21, 713, 10.1016/S1001-0742(08)62329-3
Sirés, 2012, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies − A review, Environ. Int., 40, 212, 10.1016/j.envint.2011.07.012
Georgieva, 2012, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapors: a short review with emphasis to TiO2-WO3 photoanodes, J. Hazard. Mater., 211–212, 30, 10.1016/j.jhazmat.2011.11.069
Bessegato, 2015, Achievements and trends in photoelectrocatalysis: from environmental to energy applications, Electrocatalysis, 6, 415, 10.1007/s12678-015-0259-9
Meng, 2015, Synergetic photoelectrocatalytic reactors for environmental remediation: a review, J. Photochem. Photobiol. C: Photochem. Rev., 24, 83, 10.1016/j.jphotochemrev.2015.07.003
Sousa, 2012, Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCS, Chem. Eng. J., 198–199, 301, 10.1016/j.cej.2012.05.060
Chen, 2015, TiO2 photocatalytic degradation and detoxification of cylindrospermopsin, J. Photochem. Photobiol. A: Chem., 307–308, 115, 10.1016/j.jphotochem.2015.03.013
Fernández-Ibánez, 2015, Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261, 36, 10.1016/j.cej.2014.06.089
Yazawa, 2008, Photocatalytic activity of transparent porous glass supported TiO2, Ceram. Int., 35, 3321, 10.1016/j.ceramint.2009.05.029
Palmisano, 2009, Graphite-supported TiO2 for 4-nitrophenol degradation in a photoelectrocatalytic reactor, Chem. Eng. J., 155, 339, 10.1016/j.cej.2009.07.002
Mazille, 2010, Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH, Water Res., 44, 3029, 10.1016/j.watres.2010.02.026
Garcia-Segura, 2013, Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray, Appl. Catal. B: Environ., 132–133, 142, 10.1016/j.apcatb.2012.11.037
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
O’M. Bockris, 1984, ;1 Technical brief on models of photoelectrocatalysis, Int. J. Hydrogen Energy, 9, 243, 10.1016/0360-3199(84)90125-3
Contractor, 1987, Photoelectrocatalysis of oxygen evolution on n-TiO2, Electrochim. Acta, 32, 121, 10.1016/0013-4686(87)87019-6
Nakata, 2012, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C: Photochem. Rev., 13, 169, 10.1016/j.jphotochemrev.2012.06.001
Hirakawa, 2009, An approach to elucidating photocatalytic reaction mechanisms by monitoring dissolved oxygen: effect of H2O2 on photocatalysis, Appl. Catal. B: Environ., 87, 46, 10.1016/j.apcatb.2008.08.027
Daghrir, 2013, Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production, Electrochim. Acta, 87, 18, 10.1016/j.electacta.2012.09.020
Almeida, 2015, Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: kinetics study and oxidation pathway, Chemosphere, 136, 63, 10.1016/j.chemosphere.2015.04.042
Nosaka, 2016, Understanding hydroxyl radical (OH) Generation Processes in Photocatalysis, ACS Energy Lett., 1, 356, 10.1021/acsenergylett.6b00174
Panizza, 2009, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109, 6541, 10.1021/cr9001319
Cavalcanti, 2013, Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond. Degradation kinetics and oxidation products, Water Res., 47, 1803, 10.1016/j.watres.2013.01.002
Florenza, 2014, Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products, Electrochim. Acta, 142, 276, 10.1016/j.electacta.2014.07.117
Huang, 1997, Phase transformation of TiO2 monitored by Thermo-Raman spectroscopy with TGA/DTA, Termochim. Acta, 297, 85, 10.1016/S0040-6031(97)00168-8
Leng, 2003, Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600°C, J. Mol. Catal. A: Chem., 206, 239, 10.1016/S1381-1169(03)00373-X
Di Paola, 2013, Brookite, the least known TiO2 photocatalyst, Catalysts, 3, 36, 10.3390/catal3010036
Luttrell, 2015, Why is anatase a better photocatalyst than rutile? −Model studies on epitaxial TiO2 films, Sci. Rep., 4, 4043, 10.1038/srep04043
Kaplan, 2016, Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants, Appl. Catal. B: Environ., 18, 465, 10.1016/j.apcatb.2015.08.027
Lassner, 1999
Yagi, 2008, Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film, J. Solid State Chem., 181, 175, 10.1016/j.jssc.2007.11.018
Xu, 2013, Effect of CoOOH loading on the photoelectrocatalytic performance of WO3 nanorod array film, Appl. Surf. Sci., 284, 285, 10.1016/j.apsusc.2013.07.095
Stellman, 1998
Hepel, 2001, Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes, Electrochim. Acta, 47, 729, 10.1016/S0013-4686(01)00753-8
Luo, 2001, Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode, Electrochim. Acta, 46, 2913, 10.1016/S0013-4686(01)00503-5
Schmidt-Mende, 2007, ZnO − nanostructures defects, and devices, Mater. Today, 10, 40, 10.1016/S1369-7021(07)70078-0
Özgür, 2005, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 1, 10.1063/1.1992666
Klingshirn, 2007, ZnO: Material, physics and applications, ChemPhysChem, 8, 782, 10.1002/cphc.200700002
Janotti, 2009, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72, 126501, 10.1088/0034-4885/72/12/126501
Li, 2013, Layer-by-layer growth of ultralong ZnO vertical wire arrays for enhanced photoelectrocatalytic activity, Mater. Lett., 97, 52, 10.1016/j.matlet.2013.01.060
Mahadik, 2013, Photoelectrocatalytic oxidation of rhodamine B with sprayed α-Fe2O3 photocatalyst, Mater. Express, 3, 247, 10.1166/mex.2013.1120
Zhang, 2015, Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination, J. Alloy. Compd., 648, 719, 10.1016/j.jallcom.2015.07.026
LeBlanc, 1986, The role of conduction/valence bands and redox potential in accelerated mineral dissolution, AIChE J., 32, 1702, 10.1002/aic.690321013
Yu, 2010, Preparation and photoelectrocatalytic properties of polyaniline/layered manganese oxide self-assembled film, Thin Solid Films, 519, 357, 10.1016/j.tsf.2010.07.105
Fan, 2009, Preparation of Ti/SnO2-Sb2O4 photoanode by electrodeposition and dip coating for PEC oxidations, Desalination, 249, 736, 10.1016/j.desal.2009.01.035
Wang, 2009, Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants, Trans. Nonferreous Met. Soc. China, 19, 778, 10.1016/S1003-6326(08)60349-0
Florencio, 2013, Application of Ti/Pt/β-PbO2 anodes in the degradation of DR80 azo dye, Port. Electrochim. Acta, 31, 257, 10.4152/pea.201305257
da Silva, 2014, Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation, Ionics, 20, 105, 10.1007/s11581-013-0967-1
Sun, 2012, Efficient contaminant removal by Bi2WO6 films with nanoleaflike structures through a photoelectrocatalytic process, J. Phys. Chem. C, 116, 19413, 10.1021/jp306332x
Pan, 2010, New type of BiPO4 oxy-acid salt photocatalyst with high photocatalytic activity on degradation of dye, Environ. Sci. Technol., 44, 5570, 10.1021/es101223n
Liao, 2014, Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants, Electrochim. Acta, 136, 310, 10.1016/j.electacta.2014.05.091
Chen, 2014, Coupling immobilized TiO2 nanobelts and Au nanoparticles for enhanced photocatalytic and photoelectrocatalytic activity and mechanism insights, Chem. Eng. J., 241, 145, 10.1016/j.cej.2013.12.028
Gong, 2012, A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property, Electrochim. Acta, 68, 178, 10.1016/j.electacta.2012.02.049
Kerkez, 2014, Photo(electro)catalytic activity of Cu2+-modified TiO2 nanorod array thin films under visible light irradiation, J. Phys. Chem. Solids, 75, 611, 10.1016/j.jpcs.2013.12.019
Tang, 2014, Preparation of an Fe-doped visible-light-response TiO2 film electrode and its photoelectrocatalytic activity, Mater. Sci. Eng. B: Adv., 187, 39, 10.1016/j.mseb.2014.04.011
Bessegato, 2015, Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes, Catal. Today, 240, 100, 10.1016/j.cattod.2014.03.073
Cheng, 2016, Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material, Water Sci. Technol., 73, 486, 10.2166/wst.2015.505
Zhang, 2012, Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants, ACS Appl. Mater. Interfaces, 4, 990, 10.1021/am201630s
Xie, 2010, Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition, Electrochim. Acta, 55, 7211, 10.1016/j.electacta.2010.07.030
Pandikumar, 2010, Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity, ACS Appl. Mater. Interface, 2, 1912, 10.1021/am100242p
Zhou, 2009, Electrochemical preparation of TiO2/SiO2 composite film and its high activity toward the photoelectrocatalytic degradation of methyl orange, J. Appl. Electrochem., 39, 1745, 10.1007/s10800-009-9869-3
Fraga, 2013, Photoelectrocatalytic oxidation of hair dye basic red 51 at W/WO3/TiO2 bicomposite photoanode activated by ultraviolet and visible radiation, J. Env. Chem. Eng., 1, 194, 10.1016/j.jece.2013.04.018
Hu, 2011, Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac, J. Hazard. Mater., 196, 220, 10.1016/j.jhazmat.2011.09.009
Chai, 2011, Novel sieve-like SnO2/TiO2 nanotubes with integrated photoelectrocatalysis: fabrication and application for efficient toxicity elimination of nitrophenol wastewater, J. Phys. Chem. C, 115, 18261, 10.1021/jp205228h
Siripala, 2003, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis, Sol. Energ. Mat. Sol C, 77, 229, 10.1016/S0927-0248(02)00343-4
Li, 2013, Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation, Nanoscale, 5, 2118, 10.1039/c3nr34253k
Bessegato, 2013, Enhanced photoabsorption properties of composites of Ti/TiO2 nanotubes decorated by Sb2S3 and improvement of degradation of hair dye, J. Photochem. Photobiol. A: Chem., 276, 96, 10.1016/j.jphotochem.2013.12.001
Yang, 2016, Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O, Appl. Catal. B: Environ., 183, 75, 10.1016/j.apcatb.2015.10.023
Zhang, 2012, Electrochemical and photoelectrochemical characteristics of TiNbO5 nanosheet electrode, Electrochim. Acta, 81, 74, 10.1016/j.electacta.2012.07.085
Kushwaha, 2016, Efficient solar energy conversion using CaCu3Ti4O12 photoanode for photocatalysis and photoelectrocatalysis, Sci. Reports, 6, 18557, 10.1038/srep18557
Cardoso, 2010, Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine, Appl. Catal. B: Environ., 99, 96, 10.1016/j.apcatb.2010.06.005
Zanoni, 2003, Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes, J. Photoch. Photobio. A: Chem., 157, 55, 10.1016/S1010-6030(02)00320-9
Gan, 2008, Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol-gel method with tri-block copolymer as structure directing agent, J. Appl. Electrochem., 38, 703, 10.1007/s10800-008-9495-5
Marugán, 2009, Synthesis, characterization and activity of photocatalytic sol-gel TiO2 powders and electrodes, Appl. Catal. B: Environ., 89, 273, 10.1016/j.apcatb.2009.02.007
Li, 2006, Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method, Electrochim. Acta, 51, 4942, 10.1016/j.electacta.2006.01.037
Shinde, 2008, Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis, Sol. Energ. Mat. Sol. C, 92, 283, 10.1016/j.solmat.2007.09.001
Shinde, 2009, UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films, Appl. Catal. B: Environ., 89, 288, 10.1016/j.apcatb.2009.02.025
Sirghi, 2003, Friction force microscopy study of the hydrophilicity of TiO2 thin films deposited by radio frequency magnetron sputtering, Surf. Rev. Lett., 10, 345, 10.1142/S0218625X03005141
He, 2006, Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application, Appl. Catal. A: Gen., 305, 54, 10.1016/j.apcata.2006.02.051
Li Puma, 2008, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapour deposition: a review paper, J. Hazard. Mater., 157, 209, 10.1016/j.jhazmat.2008.01.040
Hitchman, 2002, Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol, J. Electroanal. Chem., 538-539, 165, 10.1016/S0022-0728(02)01252-4
Heikkilä, 2009, Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis, J. Photochem. Photobiol. A: Chem., 204, 200, 10.1016/j.jphotochem.2009.03.019
Wang, 2014, Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition, Chem. Soc. Rev., 43, 7469, 10.1039/C3CS60370A
Gardon, 2014, Milestones in functional titanium dioxide thermal spray coatings: a review, J. Therm. Spray Technol., 23, 577, 10.1007/s11666-014-0066-5
Su, 2008, Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes, J. Photochem. Photobiol. A: Chem., 194, 152, 10.1016/j.jphotochem.2007.08.002
Xie, 2010, Photoelectrocatalysis reactivity of independent titania nanotubes, J. Appl. Electrochem., 40, 1281, 10.1007/s10800-010-0077-y
Wang, 2011, Efficient photoelectrocatalytic reduction of Cr(VI) using TiO2 nanotube arrays as the photoanode and a large-area titanium mesh as the photocathode, J. Mol. Catal. A: Chem., 335, 242, 10.1016/j.molcata.2010.11.040
Zhang, 2010, A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode, Electrochim. Acta, 55, 5091, 10.1016/j.electacta.2010.03.104
Liu, 2013, Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change, Chemosphere, 93, 160, 10.1016/j.chemosphere.2013.05.018
Tekin, 2013, Photoelectrocatalytic decomposition of acid black 1 dye using TiO2 nanotubes, J. Environ. Chem. Eng., 1, 1057, 10.1016/j.jece.2013.08.020
Cheng, 2015, Construction of high-efficient photoelectrocatalytic system by coupling with TiO2 nano-tubes photoanode and active carbono/polytetrafluoroethylene cathode and its enhanced photoelectrocatalytic degradation of 2,4-dichlorophene and mechanism, Chem. Eng. J., 279, 264, 10.1016/j.cej.2015.05.029
Mohapatra, 2007, A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting water, J. Catal., 246, 362, 10.1016/j.jcat.2006.12.020
Liu, 2015, Fabrication of a coral/double-wall TiO2 nanotube array film electrode with higher photoelectrocatalytic activity under sunlight, New. J. Chem., 39, 3923, 10.1039/C5NJ00340G
Dosta, 2016, Influence of atmospheric plasma spraying on the solar photoelectron-catalytic properties of TiO2 coatings, Appl. Catal. B: Environ., 189, 151, 10.1016/j.apcatb.2016.02.048
Fu, 2009, Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box-Behnken design, Desalination, 243, 42, 10.1016/j.desal.2008.03.038
Su, 2008, Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes, Mater. Chem. Phys., 110, 239, 10.1016/j.matchemphys.2008.01.036
de Vidales, 2016, Photoelectrocatalytic oxidation of methyl orange on a TiO2 nanotubular anode using a flow cell, Chem. Eng. Technol., 39, 135, 10.1002/ceat.201500085
Selcuk, 2003, Photoelectrocatalytic humic acid degradation kinetics and effect of pH, applied potential and inorganic ions, J. Chem. Technol. Biotechnol., 78, 979, 10.1002/jctb.895
Ding, 2014, Dual-cell wastewater treatment system with combining anodic visible light driven photoelectro-catalytic oxidation and cathodic electro-Fenton oxidation, Sep. Purif. Technol., 125, 103, 10.1016/j.seppur.2014.01.046
Moreira, 2017, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal. B: Environ., 202, 217, 10.1016/j.apcatb.2016.08.037
Ruiz, 2011, Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode, Chemosphere, 82, 495, 10.1016/j.chemosphere.2010.11.013
Olya, 2013, Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies, J. Environ. Manage., 121, 210, 10.1016/j.jenvman.2013.01.041
Pirkarami, 2014, UV/Ni-TiO2 nanocatalyst for electrochemical removal of dyes considering operating costs, Water Res. Ind., 5, 9, 10.1016/j.wri.2014.02.001
Li, 2002, An innovative Ti/TiO2 mesh photoelectrode for methyl orange photoelectrocatalytic degradation, J. Environ. Sci. Health A: Toxic/Hazard. Subst. Environ. Eng., A37, 623, 10.1081/ESE-120003242
Li, 2005, Studies on photo-electro-chemical catalytic degradation of Acid Scarlet 3R dye, Sci. China B: Chem., 48, 297, 10.1360/042004-69
Su, 2005, Comparison of the photocatalytic and photoelectrocatalytic decolorization of methyl orange on sputtered TiO2 thin films, Z. Naturfor. B: Chem. Sci., 60, 1158, 10.1515/znb-2005-1108
Egerton, 2006, Decolourization of dye solutions using photoelectrocatalysis and photocatalysis, J. Adv. Oxid.Technol., 9, 79
Xie, 2006, Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes, Mater. Chem. Phys., 95, 39, 10.1016/j.matchemphys.2005.05.048
Macedo, 2007, Degradation of leather dye on TiO2: a study of applied experimental parameters on photoelectrocatalysis, J. Photochem. Photobiol. A: Chem., 185, 86, 10.1016/j.jphotochem.2006.05.016
Liu, 2009, Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatlysis under UV and visible light irradiation, Progress Org. Coat., 64, 120, 10.1016/j.porgcoat.2008.09.014
Li, 2010, Photoelectrocatalytic degradation of methyl orange over mesoporous film electrodes, Photochem. Photobiol. Sci., 9, 39, 10.1039/B9PP00084D
Neumann-Spallart, 2011, Photoelectrochemistry on a planar, interdigitated electrochemical cell, Electrochim. Acta, 56, 8752, 10.1016/j.electacta.2011.07.089
Su, 2011, Study on photoelectrocatalysis of three-dimensional electrode using TiO2 coatings particle electrode, Adv. Mater. Res., 156–157, 344
Zhanga, 2011, Photoelectrocatalytic degradation of methyl orange on porous TiO2 film electrode in NaCl solution, Adv. Mater. Res., 213, 15, 10.4028/www.scientific.net/AMR.213.15
Zhang, 2012, Photoelectrocatalytic properties of porous TiO2 films prepared using ODA as template, Adv. Mater. Res., 457–458, 521, 10.4028/www.scientific.net/AMR.457-458.521
Cervantes, 2013, Photoelectrocatalysis study of the decolorization of synthetic azo dye mixtures on Ti/TiO2, Electrocatalysis, 4, 85, 10.1007/s12678-012-0123-0
Tan, 2014, Large-scale preparation of nanoporous TiO2 film on titanium substrate with improved photoelectrochemical performance, Nanoscale Res. Lett., 9, 190, 10.1186/1556-276X-9-190
Liu, 2016, Photoelectrochemical degradation of dye wastewater on TiO2-coated titanium electrode prepared by electrophoretic deposition, Sep. Purif. Technol., 165, 145, 10.1016/j.seppur.2016.03.045
Devi, 2007, Enhanced activity of nano-TiO2 in photoelectrocatalysis over photocatalysis process for the degradation of Indanthrene BR Violet dye in presence of UV-light, Polish J. Chem., 81, 1819
Osugi, 2008, Toxicity assessment and degradation of disperse azo dyes by photoelectrocatalytic oxidation on Ti/TiO2 nanotubular array electrodes, J. Adv. Oxid. Technol., 11, 425
Bai, 2011, Enhanced photoelectrocatalytic degradation of azo-dye pollutants using transparent titania nanotube arrays glass electrode, Adv. Mater. Res., 311–313, 2089, 10.4028/www.scientific.net/AMR.311-313.2089
Ferraz, 2013, Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples, J. Environ. Manage., 124, 108, 10.1016/j.jenvman.2013.03.033
Zanoni, 2013, Photoelectrochemical hydrogen generation and concomitant organic dye oxidation under TiO2 nanotube, ECS Trans., 50, 63, 10.1149/05036.0063ecst
Franz, 2015, Photoelectrochemical advanced oxidation processes on nanostructured TiO2 catalysts: decolorization of a textile azo-dye, Khim. Tekhnol. Vody, 37, 207
Bessegato, 2016, Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization, Appl. Catal. B: Environ., 180, 161, 10.1016/j.apcatb.2015.06.013
Rodrigues, 2011, Synthesis and characterization of Fe(III)-doped ceramic membranes of titanium dioxide and its application in photoelectrocatalysis of a textile dye, Eclet. Quim., 36, 0002, 10.1590/S0100-46702011000100002
Gong, 2012, Tungsten and nitrogen co-doped TiO2 electrode sensitized with Fe-chlorophyllin for visible light photoelectrocatalysis, Chem. Eng. J., 209, 94, 10.1016/j.cej.2012.07.137
Liao, 2012, Synthesis and photoelectrocatalytic property of two-nonmetal-codoped TiO2 nanotube arrays with high aspect ratio, Adv. Mater. Res., 412, 219, 10.4028/www.scientific.net/AMR.412.219
Zhang, 2010, Visible light photoelectrocatalytic degradation of methylene blue by platinum-treated carbon nanotube/titania composites, Asian J. Chem., 22, 5636
Wang, 2015, Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment, J. Hazard. Mater., 299, 27, 10.1016/j.jhazmat.2015.06.005
Zhang, 2010, CdS-encapsulated TiO2 nanotube arrays lidded with ZnO nanorod layers and their photoelectrocatalytic applications, ChemPhysChem, 11, 3491, 10.1002/cphc.201000371
Shen, 2012, Fabrication of TiO2 nanotube films modified with Ag2S and photoelectrocatalytic decolorization of methyl orange under solar light, Sci. Adv. Mater., 4, 1214, 10.1166/sam.2012.1416
Wang, 2012, Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation, Chem. Eng. J., 198–199, 547, 10.1016/j.cej.2012.04.062
Li, 2012, Photoelectrocatalytic properties of a vertically aligned Ti-W alloy oxide nanotubes array and its applications in dye wastewater degradation, Environ. Technol., 33, 191, 10.1080/09593330.2011.556150
Wang, 2013, Visible-light photoelectrocatalytic degradation of rhodamine B over planar devices using a multi-walled carbon nanotube-TiO2 composite, Mater. Sci. Semicond. Process., 16, 480, 10.1016/j.mssp.2012.06.018
Zhai, 2013, Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation, J. Hazard. Mater., 263, 291, 10.1016/j.jhazmat.2013.09.013
Zhang, 2014, Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation, Electrochim. Acta, 148, 180, 10.1016/j.electacta.2014.10.043
Guaraldo, 2016, Hydrogen production and simultaneous photoelectrocatalytic pollutant oxidation using a TiO2/WO3 nanostructured photoanode under visible light irradiation, J. Electroanal. Chem., 765, 188, 10.1016/j.jelechem.2015.07.034
Wang, 2016, Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays, Appl. Surf. Sci., 362, 490, 10.1016/j.apsusc.2015.11.228
Liu, 2014, BiOI/TiO2 nanotube arrays, a unique flake-tube structured p-n junction with remarkable visible-light photoelectrocatalytic performance and stability, Dalton Trans., 43, 1706, 10.1039/C3DT52394B
Zhao, 2010, Photoelectrocatalytic degradation of organic contaminant at hybrid BDD-ZnWO4 electrode, Catal. Commun., 12, 76, 10.1016/j.catcom.2010.08.013
Fraga, 2011, Nanoporous of W/WO3 thin film electrode grown by electrochemical anodization applied in the photoelectrocatalytic oxidation of the Basic Red 51 used in hair dye, J. Braz. Chem. Soc., 22, 718, 10.1590/S0103-50532011000400015
Chatchai, 2013, Photoelectrocatalytic performance of WO3/BiVO4 toward the dye degradation, Electrochim. Acta, 94, 314, 10.1016/j.electacta.2013.01.152
Shinde, 2013, Solar light assisted photocatalysis of water using a zinc oxide semiconductor, J. Semicond., 34, 10.1088/1674-4926/34/4/043002
Zeng, 2015, A novel in situ preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants, J. Mater. Chem. A: Mater. Energy Sustain., 3, 4345, 10.1039/C4TA06017B
Zeng, 2015, BiPO4 film on ITO substrates for photoelectrocatalytic degradation, Inorg. Chem. Commun., 58, 39, 10.1016/j.inoche.2015.04.027
Cong, 2016, Enhanced photoelectrocatalytic activity of a novel Bi2O3-BiPO4 composite electrode for the degradation of refractory pollutants under visible light irradiation, Ind. Eng. Chem. Res., 55, 1221, 10.1021/acs.iecr.5b04591
Mohite, 2016, Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO3 photoelectrode, J. Alloys Comp., 655, 106, 10.1016/j.jallcom.2015.09.154
Jorge, 2005, Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode, J. Photochem. Photobiol. A: Chem., 174, 71, 10.1016/j.jphotochem.2005.03.010
An, 2006, Improving ultraviolet light transmission in a packed-bed photoelectrocatalytic reactor for removal of oxalic acid from wastewater, J. Photochem. Photobiol. A: Chem., 181, 158, 10.1016/j.jphotochem.2005.11.019
Selcuk, 2008, Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photoanode, Chemosphere, 73, 854, 10.1016/j.chemosphere.2008.05.069
Fraga, 2009, Evaluation of the photoelectrocatalytic method for oxidizing chloride and simultaneous removal of microcystin toxins in surface waters, Electrochim. Acta, 54, 2069, 10.1016/j.electacta.2008.08.060
Chen, 2012, Adsorption and photoelectrocatalytic characteristics of organics on TiO2 nanotube arrays, J. Solid State Electrochem., 16, 3907, 10.1007/s10008-012-1837-x
Daskalaki, 2013, Solar light-induced photoelectrocatalytic degradation of bisphenol-A on TiO2/ITO film anode and BDD cathode, Catal. Today, 209, 74, 10.1016/j.cattod.2012.07.026
Suhadolnik, 2016, Mechanism and kinetics of phenol photocatalytic, electrocatalytic and photoelectrocatalytic degradation in a TiO2-nanotube fixed-bed microreactor, Chem. Eng. J., 303, 292, 10.1016/j.cej.2016.06.027
Gong, 2011, Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate, Chem. Eng. J., 167, 190, 10.1016/j.cej.2010.12.020
Yang, 2014, Enhanced photoelectrocatalytic activity of Cr-doped TiO2 nanotubes modified with polyaniline, Mater. Sci. Semicond. Process., 27, 777, 10.1016/j.mssp.2014.08.007
He, 2003, Photoelectrochemical performance of Ag-TiO2/ITO film and photoelectrocatalytic activity towards the oxidation of organic pollutants, J. Photochem. Photobiol. A: Chem., 157, 71, 10.1016/S1010-6030(03)00080-7
Li, 2005, Photoelectrocatalytic degradation of bisphenol A in aqueous solution using Au-TiO2/ITO film, J. Appl. Electrochem., 35, 741, 10.1007/s10800-005-1385-5
Antoniadou, 2011, Photocatalysis and photoelectrocatalysis using (CdS-ZnS)-TiO2 combined photocatalysts, Appl. Catal. B: Environ., 107, 188, 10.1016/j.apcatb.2011.07.013
Su, 2011, Study on photoelectrocatalytic of three-dimensional electrode using TiO2 coated γ-Al2O3 and scrap iron particle electrode, Appl. Mech. Mater., 71–78, 972, 10.4028/www.scientific.net/AMM.71-78.972
Su, 2011, Photoelectrocatalytic performance of TiO2 film treatment of La(NO3)3, Energy Procedia, 11, 2333
Zhao, 2011, Photoelectrocatalytic degradation of organic contaminants at Bi2O3/TiO2 nanotube array electrode, Appl. Surf. Sci., 257, 4621, 10.1016/j.apsusc.2010.12.099
Liao, 2013, Photoelectrocatalytic degradation of microcystin-LR using Ag/AgCl/TiO2 nanotube arrays electrode under visible light irradiation, Chem. Eng. J., 231, 455, 10.1016/j.cej.2013.07.054
Mojumder, 2014, Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO2 nanotubes, ACS Appl. Mater. Interface, 6, 5585, 10.1021/am406040v
Shinde, 2014, Photodegradation of organic pollutants using N-titanium oxide catalyst, J. Photochem. Photobiol. B: Biol., 141, 186, 10.1016/j.jphotobiol.2014.09.017
Pan, 2015, Construction of Mn0.5Zn0.5Fe2O4 modified TiO2 nanotube array nanocomposite electrodes and their photoelectrocatalytic performance in the degradation of 2,4-DCP, J. Mater. Chem. C, 3, 6025, 10.1039/C5TC01008J
Yang, 2015, TiO2 nanotube array photoelectrocatalyst and Ni-Sb-SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment, ACS Appl. Mater. Interface, 7, 1907, 10.1021/am5076748
Su, 2016, Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient heterojunction for pollutants degradation under solar light, J. Hazard. Mater., 316, 159, 10.1016/j.jhazmat.2016.05.004
Zhao, 2007, Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation, Appl. Catal. B: Environ., 72, 92, 10.1016/j.apcatb.2006.10.006
Nissen, 2008, Remediation of a chlorinated aromatic hydrocarbon in water by photoelectrocatalysis, Environ. Pollut., 157, 72, 10.1016/j.envpol.2008.07.024
Fan, 2014, Liquid phase deposition of ZnO film for photoelectrocatalytic degradation of p-nitrophenol, Mater. Sci. Semicond. Process., 17, 104, 10.1016/j.mssp.2013.09.005
Valdez, 2012, Degradation of paracetamol by advanced oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3, Chemosphere, 89, 1195, 10.1016/j.chemosphere.2012.07.020
Liu, 2012, Behaviour of multi-component mixtures of tetracyclines when degraded by photoelectrocatalytic and electrocatalytic technologies, Environ. Technol., 33, 791, 10.1080/09593330.2011.595828
Daghrir, 2012, Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a Pulsed Laser Deposition process, J. Hazard. Mater., 199–200, 15, 10.1016/j.jhazmat.2011.10.022
Nie, 2013, Synthesis and characterization of TiO2 nanotube photoanode and its application in photoelectrocatalytic degradation of model environmental pharmaceuticals, J. Chem. Technol. Biotechnol., 88, 1488, 10.1002/jctb.3992
Cheng, 2013, Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode, Electrochim. Acta, 108, 203, 10.1016/j.electacta.2013.06.110
Li, 2014, Photoelectrocatalytic degradation of ofloxacin using highly ordered TiO2 nanotube arrays, Electrocatalysis, 5, 379, 10.1007/s12678-014-0204-3
Su, 2016, Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode, Appl. Catal. B: Environ., 186, 184, 10.1016/j.apcatb.2016.01.003
Liu, 2016, Simultaneous degradation of ofloxacin and recovery of Cu(II) by photoelectrocatalysis with highly ordered TiO2 nanotubes, J. Hazard. Mater., 308, 264, 10.1016/j.jhazmat.2016.01.046
Hua, 2016, Copper nanoparticles sensitized TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation, Chem. Eng. J., 283, 514, 10.1016/j.cej.2015.07.072
Cheng, 2016, A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac, Chemosphere, 144, 888, 10.1016/j.chemosphere.2015.09.070
Selcuk, 2004, An innovative photocatalytic technology in the treatment of river water containing humic substances, Water Sci. Technol., 49, 153, 10.2166/wst.2004.0248
Shinde, 2012, Hydroxyl radical's role in the remediation of wastewater, J. Photochem. Photobio. B: Biol., 116, 66, 10.1016/j.jphotobiol.2012.08.003
Fang, 2013, Removal of COD and colour in real pharmaceutical wastewater by photoelectrocatalytic oxidation method, Environ. Technol., 34, 779, 10.1080/09593330.2012.715760
Li, 2014, Optimization and application of TiO2/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously, Water Res., 62, 1, 10.1016/j.watres.2014.05.044
Zhou, 2015, Degradation kinetics of photoelectrocatalysis on landfill leachate using codoped TiO2/Ti photoelectrodes, J. Nanomater., 10.1155/2015/810579