Applied machine learning to analyze and predict CO2 adsorption behavior of metal-organic frameworks
Tài liệu tham khảo
Abid, 2020, Boosting CO2 adsorption and selectivity in metal-organic frameworks of MIL-96(Al) via second metal Ca coordination, RSC Adv., 10, 8130, 10.1039/D0RA00305K
Altmann, 2010, Permutation importance: a corrected feature importance measure, Bioinformatics, 26, 1340, 10.1093/bioinformatics/btq134
Azmi, 2019, Mesoporous adsorbent for CO2 capture application under mild condition: a review, J. Environ. Chem. Eng., 7, 10.1016/j.jece.2019.103022
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Chadha, 2021, A survey on prediction of suicidal ideation using machine and ensemble learning, Comput. J., 64, 1617, 10.1093/comjnl/bxz120
Chen, 2016, CO2 adsorption over metal-organic frameworks: a mini review, J. Nanosci. Nanotechnol., 16, 4291, 10.1166/jnn.2016.10971
Chen, 2017, Synthesis of hierarchically structured hybrid materials by controlled self-assembly of metal-organic framework with mesoporous silica for CO2 adsorption, ACS Appl. Mater. Interfaces, 9
De Mulder, 2023, Explainable black box models, 573
Deng, 2016, Efficient kNN classification algorithm for big data, Neurocomputing, 195, 143, 10.1016/j.neucom.2015.08.112
Ding, 2019, Carbon capture and conversion using metal-organic frameworks and MOF-based materials, Chem. Soc. Rev., 48, 2783, 10.1039/C8CS00829A
Dong, 2020, A survey on ensemble learning, Front. Comput. Sci-Chi, 14, 241, 10.1007/s11704-019-8208-z
Elshawi, 2019, On the interpretability of machine learning-based model for predicting hypertension, BMC Med. Inform. Decis., 19, 10.1186/s12911-019-0874-0
Fu, 2020, Metal-organic frameworks for C2H2/CO2 separation, Dalton Trans., 49, 16598, 10.1039/D0DT03349A
Furukawa, 2008, Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra, J. Am. Chem. Soc., 130, 11650, 10.1021/ja803783c
Ghanbari, 2020, A review on production of metal organic frameworks (MOF) for CO2 adsorption, Sci. Total Environ., 707, 10.1016/j.scitotenv.2019.135090
Gheorghe, 2021, Metal-organic framework based systems for CO2 sensing, J. Mater. Chem. C, 9, 16132, 10.1039/D1TC02249K
He, 2016, A bifunctional metal-organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis, J. Mater. Chem. A, 4, 15240, 10.1039/C6TA05098K
He, 2019, Evaluating the performance of the K-fold cross-validation approach for model selection in growth mixture modeling, Struct. Equ. Model., 26, 66, 10.1080/10705511.2018.1500140
Hsu, 2020, Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study, Sci. Rep., 10, 16777, 10.1038/s41598-020-73776-9
Hu, 2019, CO2 capture in metal-organic framework adsorbents: an engineering perspective, Adv. Sustain. Syst., 3
Huang, 2012, Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups, Dalton Trans., 41, 9283, 10.1039/c2dt30950e
Jia, 2022, Feature dimensionality reduction: a review, Complex Intell. Syst., 8, 2663, 10.1007/s40747-021-00637-x
Kanoo, 2012, A metal-organic framework with highly polar pore surfaces: selective CO2 adsorption and guest-dependent on/off emission properties, Chemistry, 18, 237, 10.1002/chem.201101183
Kim, 2012, Amine-functionalized MIL-53(Al) for CO2/N2 separation: effect of textural properties, Fuel, 102, 574, 10.1016/j.fuel.2012.06.016
Kotsiantis, 2013, Decision trees: a recent overview, Artif. Intell. Rev., 39, 261, 10.1007/s10462-011-9272-4
Koytsoumpa, 2018, The CO2 economy: review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132, 3, 10.1016/j.supflu.2017.07.029
Krawczyk, 2017, Ensemble learning for data stream analysis: a survey, Inf. Fusion, 37, 132, 10.1016/j.inffus.2017.02.004
Li, 2016, Applications of metal-organic frameworks featuring multi-functional sites, Coord. Chem. Rev., 307, 106, 10.1016/j.ccr.2015.05.005
Li, 2020, Fuel properties of hydrochar and pyrochar: prediction and exploration with machine learning, Appl. Energy, 269, 10.1016/j.apenergy.2020.115166
Liao, 2023, The influence of biomass species and pyrolysis temperature on carbon-retention ability and heavy metal adsorption property during biochar aging, Fuel Process. Technol., 240, 10.1016/j.fuproc.2022.107580
Lin, 2019, Exploration of porous metal-organic frameworks for gas separation and purification, Coord. Chem. Rev., 378, 87, 10.1016/j.ccr.2017.09.027
Lin, 2018, Model-free feature screening for high-dimensional survival data, Sci. China Math., 61, 1617, 10.1007/s11425-016-9116-6
Liu, 2012, Progress in adsorption-based CO2 capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308, 10.1039/C1CS15221A
Ly, 2018, Analytic posteriors for Pearson's correlation coefficient, Stat. Neerl., 72, 4, 10.1111/stan.12111
Mardani, 2019, Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017, Sci. Total Environ., 649, 31, 10.1016/j.scitotenv.2018.08.229
Niu, 2021, sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks, Plant Mol. Biol., 105, 483, 10.1007/s11103-020-01102-y
Nohara, 2022, Explanation of machine learning models using shapley additive explanation and application for real data in hospital, Comput. Methods Programs Biomed., 214, 10.1016/j.cmpb.2021.106584
Peikert, 2012, Amino substituted Cu3(btc)2: a new metal-organic framework with a versatile functionality, Chem. Commun., 48, 11196, 10.1039/c2cc36220a
Rana, 2016, A hybrid technique for selecting support vector regression parameters based on a practical selection method and grid search procedure, Econ. Comput. Econ. Cybern., 50, 231
Yan, 2021, Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS)—a state-of-the-art review, Energy Environ. Sci., 14, 6122, 10.1039/D1EE02395K
Yuan, 2021, Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons, Environ. Sci. Technol., 55, 11925, 10.1021/acs.est.1c01849
Zhai, 2015, Design of pore size and functionality in pillar-layered Zn-triazolate-dicarboxylate frameworks and their high CO2/CH4 and C2 hydrocarbons/CH4 selectivity, Inorg. Chem., 54, 9862, 10.1021/acs.inorgchem.5b01611
Zhao, 2009, Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5), Ind. Eng. Chem. Res., 48, 10015, 10.1021/ie900665f
Zhu, 2019, The application of machine learning methods for prediction of metal sorption onto biochars, J. Hazard. Mater., 378, 10.1016/j.jhazmat.2019.06.004