Applications of indocyanine green in robotic urology

Journal of Robotic Surgery - Tập 10 - Trang 357-359 - 2016
Anthony S. Bates1,2, Vipul R. Patel3
1Department of Urology, University Hospitals of Leicester, Leicester, UK
2University Of Oxford, Oxford, UK
3Global Robotics Institute, Florida Hospital in Celebration, Orlando, USA

Tóm tắt

Indocyanine green is a fluorescent molecule with wide ranging applications in minimally invasive urological surgery. This article explores the utility of ICG assisted intraoperative fluorescence in robotic urology.

Tài liệu tham khảo

Landsman ML, Kwant G, Mook GA, Zijlstra WG (1976) Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 40(4):575–583 Choi M, Choi K, Ryu SW, Lee J, Choi C (2011) Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature. J Biomed Opt 16(4):046008 Sevick-Muraca EM, Houston JP, Gurfinkel M (2002) Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6(5):642–650 Schaafsma BE, Mieog JD, Hutteman M et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104(3):323–332 Brooker LGS, Heseltine DW, Inventors. Eastman Kodak Co, assignee (1959) Tricarbocyanine infrared absorbing dyes. United States Patent 2895955A United States Food and Drug Administration. Approval of “IC-Green”. [Online]. https://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails. Accessed 10 April 2016 Obana A, Miki T, Hayashi K, Takeda M et al (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118(6):749–753 Alander JT, Kaartinen I, Laakso A et al (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585 Boni L, David G, Mangano A et al (2015) Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc 29(7):2046–2055 Moore GE (1947) Fluorescein as an Agent in the Differentiation of Normal and Malignant Tissues. Science 106(2745):130–131 Moore GE, Peyton WT, French LA, Walker WW (1948) The Clinical Use of Fluorescein in Neurosurgery. J Neurosurg 5(4):392–398 Morris B (2005) Robotic surgery: applications, limitations, and impact on surgical education. Med Gen Med 7(3):72 Novara G, Ficarra V, Mocellin S et al (2012) Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol 62(3):382–404 Ficarra V, Novara G, Rosen RC et al (2012) Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol 62(3):405–417 Ficarra V, Novara G, Ahlering TE et al (2012) Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol 62(3):418–430 Cathcart P, Nossiter J, Aggarwal A et al (2013) The first national clinical audit of prostate cancer care. BJU Int 112(7):883–884 Das CJ, Baliyan V, Sharma S (2015) Image-guided urological interventions: What the urologists must know. Indian J Urol 31(3):202–208 KleinJan GH, van den Berg NS, Brouwer OR et al (2014) Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol 66(6):991–998 Tobis S, Knopf J, Silvers C et al (2011) Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 186(1):47–52 Bjurlin MA, Gan M, McClintock TR et al (2014) Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery. Eur Urol 65(4):793–801 Kumar A, Samavedi S, Bates A et al (2015) Use of intra-operative indocyanine green and Firefly® technology to visualize the “landmark artery” for nerve sparing robot assisted radical prostatectomy. Eur Urol Suppl 2(14):eV36 Golijanin DJ, Marshall J, Cardin A et al (2008) Bilitranslocase (BTL) is immunolocalised in proximal and distal renal tubules and absent in renal cortical tumors accurately corresponding to intraoperative near infrared fluorescence (NIRF) expression of renal cortical tumors using intravenous indocyanine green (ICG). J Urol 179(4):137 Manny TB, Krane LS, Hemal AK (2013) Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J Endourol 27(7):918–921 Borofsky MS, Gill IS, Hemal AK et al (2013) Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int 111(4):604–610 Krane LS, Hemal AK (2014) Surgery: Is indocyanine green dye useful in robotic surgery? Nat Rev Urol 11(1):12–14 Kang SG, Schatloff O, Haidar AM et al (2015) Does surgeon subjective nerve sparing score predict recovery time of erectile function following robot-assisted radical prostatectomy? J Sex Med 12(6):1490–1496 Manny TB, Patel M, Hemal AK (2014) Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol 65(6):1162–1168 Montironi R, Lopez-Beltran A, Cheng L, Words of wisdom (2014) Re: Antibody-drug conjugates targeting prostate-specific membrane antigen. Eur Urol 66(6):1190–1193 Ghosh A, Heston WDW (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91(3):528–539 Nakajima T, Mitsunaga M, Bander NH, Heston WD, Choyke PL, Kobayashi H (2011) Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody–indocyanine green (ICG) conjugate. Bioconjugate Chem 22(8):1700–1705 Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23(21):4591–4601 Bander NH, Trabulsi EJ, Kostakoglu L et al (2003) Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 170(5):1717–1721 Pandit-Taskar N, O’Donoghue JA, Beylergil V et al (2014) 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 41(11):2093–2105